test Documentation
Release test

test

Dec 06, 2017






Contents

Biopython 3
1.1 Tutorial and Cookbook . . . . . . . . . o . e e e e e e e 3
Introduction 5
2.1 Whatis Biopython? . . . . . . . e e e e e e e 5
2.2 What can I find in the Biopython package . . . . . . . . . . .. ... ... ... 5
2.3 Aboutthese notebooks . . . . . . L. e e e e e e e 6
Quick Start 7
3.1  General overview of what Biopython provides . . . . .. .. ... ... .. ... ... . . ... . 7
3.2 Working withsequences . . . . . . . . . . L e 8
33 Awusageexample . . . ... e e 8
3.4 Parsing sequence file formats . . . . ... o o L 9
3.5 Connecting with biological databases . . . . . . . . . . . . . . e 11
3.6 WhattodOneXt . . . . . v v i i e e e e e e e e e e e e e e 11
Sequence Objects 13
4.1 Sequences and Alphabets . . . . . . . .. e e e e e e e e e 13
4.2 Sequences act like Strings . . . . . . ... L e e e e e e e e e 14
43  SHCINZ @SEQUENCE .« .« v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 15
4.4  Turning Seq 0bjects iNtO SrINGS . . . . . .« o vt v e e e e e e e e e e 16
4.5 Concatenating or adding SEqUENCES . . . . . . . o v v i i i e e e e e e 16
4.6 Changin@ Case . . . v v v v v v i e e e e e e e e e e e e e e e e e e e e e e e 17
4.7  Nucleotide sequences and (reverse) complements . . . . . . . . . . . oLt e e e e e 18
4.8 TransCription . . . . . . v v i i e e e e e e e e e e e e e e e e e e e e e e 18
49 Translation . . . . . . . L L e e e e e e e e e e 19
4.10 Translation Tables . . . . . . . . . . o o e e e e e e e e e e e 21
4.11 Comparing Seqobjects . . . . . . . . . e e e e e e e e e e 22
4.12 MutableSeq ObJeCtS . . . . . v i e e e e e e e e e e e e e e e e e 23
4.13 UnknownSeq Objects . . . . . . . . . e e e e 24
4.14 Working with strings directly . . . . . . . . . ... oL 25
Sequence annotation objects 27
5.1 The SeqRecord Object . . . . . . . . . . . e 27
5.2 CreatingaSeqRecord . . . . . . .. ... e 28
5.3 Feature, location and position Objects . . . . . . . . . ...l e 32
54 References . . . . . . . . e e 36




10

11

5.5 Theformatmethod . . . . . . . . . . . e e e e

5.6 SlicingaSeqRecord . . . . . . . . e e e e
5.7 Adding SeqRecord objects . . . . . . . L. e e e e e e e
5.8 Reverse-complementing SeqRecord objects . . . . . . . .. ... o oo Lo
Sequence Input/Output

6.1 Parsing or Reading Sequences . . . . . . . . . .. ... e e
6.2 Reading Sequence Files . . . . . . . . . . . e
6.3  Parsing sequences from compressed files . . . . .. ... Lo
6.4 Parsing sequences fromthenet . . . ... . ... ... e
6.5 Sequence files as dictionaries . . . . . . . . ..o e e e e e e e e e e e e e
6.6  Writing sequence files . . . . . . . L. e e e e e e e

Multiple Sequence Alignment objects

7.1  Parsing or Reading Sequence Alignments . . . . . . . . . . . . e e
7.2 Writing Alignments . . . . . ... e e e e
7.3 Manipulating Alignments . . . . . ...l e
7.4  Alignment TooIs . . . . . . . . L L e e

BLAST

8.1 Running BLAST over the Internet . . . . . . . . . . .. .. .. . e
8.2 Saving blast output . . . . . ... e e e e e e
8.3 Running BLAST locally . . . . . . . . L e
8.4 Parsing BLAST output . . . . . . . . o e e e e e e e e e e e e
85 TheBLASTrecordclass . . . . . .. .. e
8.6 Deprecated BLAST parsers . . . . . . . . . . . e
8.7 Bio.Blast.NCBIStandalone . . . . . . . . . . . . . e

BLAST and other sequence search tools (experimental code)

9.1 The SearchlO objectmodel . . . . . ... ... .. ...
9.2 A note about standards and conventions . . . . . . .. ... .o e e e e e e e e e
9.3 Reading searchoutputfiles . . . . . . . . . . . L
9.4  Dealing with large search output files withindexing . . . . . . .. .. ... ... ... ... ....
9.5  Writing and converting search outputfiles . . . . . . . . . ... ... L L L L

Accessing NCBI’s Entrez databases

10.1 Entrez Guidelines . . . . . . . . . . . e
10.2 Elnfo: Obtaining information about the Entrez databases . . . . . . . . ... ... ... .. .....
10.3 ESearch: Searching the Entrez databases . . . . . . . .. ... ... ... .. ... .. ... .
10.4 EPost: Uploading a list of identifiers . . . . . . . . . . . . . ...
10.5 ESummary: Retrieving summaries from primary IDs . . . . . . . . .. ... oL
10.6 EFetch: Downloading full records from Entrez . . . . . . .. ... ... ... .. ... . ....
10.7 ELink: Searching for related items in NCBI Entrez . . . . . . ... ... .. ... ..........
10.8 EGQuery: Global Query - counts for searchterms . . . . . . . ... ... ... ... . ......
10.9 ESpell: Obtaining spelling suggestions . . . . . . . . . . o v vttt
10.10 Parsing huge Entrez XML files . . . . . . . . . . . o
10.11 Handling e1rors . . . . . . v v o o e e e e e e e e e e e e e e e e e e e e
10.12 Specialized Parsers . . . . . v v v v i e e e e e e e e e e e e e e e e e e e e e
10.13 USINZ @ PIOXY . v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e
10.14 Examples . . . . . o o o o e e e e e e e e e e e e
10.15 Using the history and WebEnv . . . . . . . . ... o e

Swiss-Prot and ExPASy
11.1 Parsing Swiss-Protfiles . . . . . . . . . . e
11.2 Parsing Prosite records . . . . . . . . . . . L e e

43
43
44
48
48
50
56

61
61
73
77
80

101
102
105
105
107
108
109
109

115
116
129
130
131
131

133
134
135
138
139
139
140
143
147
148
149
150
153
162
163
219




11.3 Parsing Prosite documentation records . . . . . . . . . ... e e e e e e e e 232

11.4 Parsing Enzyme records . . . . . . . . o . . i e e e e e e e e e 233
11.5 Accessing the EXPASy server . . . . . . . . e e e 234
11.6 Scanning the Prosite database . . . . . . . . . . . . . . L e e 244
12 Going 3D: The PDB module 247
12.1 Reading and writing crystal structure files . . . . . . . . ... ... o oL oo 247
12.2 Structure representation . . . . . . . . .. ..o i i e e e e e e e e e e e e 250
12.3 Disorder . . . . . . .. e e e 256
12.4 Heteroresidues . . . . . . o o v v i e e e e e e e e e e 258
12.5 Navigating through a Structure object . . . . . . . . . . . o i e e e e 258
12.6  Analyzing StrUCLUIES . . . . . o v v i v e e e e e e e e e e e e e e e e e e e e e e e e e 555
127 Common problemsin PDB files . . . . . . . .. ... . ... 559
12.8 Accessing the Protein DataBank . . . . . . ... ... oL 000 561
13 Bio.PopGen: Population genetics 563
13.1 GenePop . . . . . . e 563
13.2 Operations on GenePoprecords . . . . . . . . . . .. e 564
13.3 Coalescent simulation . . . . . . . . . L e e e e 565
14 Phylogenetics with Bio.Phylo 569
14.1 Demo: whatisinatree? . . . . . . . . . i i it e e e e e e e 569
142 T/Ofunctions . . . . . . . o o i i i e e e e e 572
14.3 View and eXport treeS . . . . v v v vt e e e e e e e e e e e e e e e e e e e e e e e e 576
14.4 Using Tree and Clade objects . . . . . . . . . . . . . . o e 581
14.5 Running external applications . . . . . . . ... ... L e 584
14.6  PAML INtegration . . . . . . . . .t vttt e e e e e e e e e e e e 585
15 Sequence motif analysis using Bio.motifs 587
15.1 Motifobjects . . . . . . . . L e 587
15.2 Reading motifs . . . . . . . . L e e e 589
153 Writing motifs . . . . . o o L e e e e e e e e e e e e e e e 598
15.4 Position-Weight Matrices . . . . . . . . o i it i i e e e e e e e e e e e e 599
15.5 Position-Specific Scoring Matrices . . . . . . . . . ... oo e e e e 600
15.6 Searching forinstances . . . . . . . . . . . L L 600
15.7 Each motif object has an associated Position-Specific Scoring Matrix . . . ... ... ... ... .. 602
15.8 Comparing motifs . . . . . . . . L e e e e 604
159 Denovomotif finding . . . . . . . . . e e e e e e e e 604
16 Cluster analysis 607
16.1 Datarepresentation . . . . . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e 607
16.2 MisSINg ValUES . . . . v v o e e e e e e e e e e e e e e e e e e e e 607
16.3 Random number @enerator . . . . . . . . . . i i e e e e e e e e e e e e e e e e e e 608
16.4 Euclideandistance . . . . . . . . . . . L e e e 609
16.5 City-block distance . . . . . . . . . .. L e 609
16.6 The Pearson correlation coefficient . . . . . . . . . . .. L Lo 609
16.7 Absolute Pearson correlation . . . . . . . . .. L e e 609
16.8 Uncentered correlation (cosine of theangle) . . . . . . . . . .. ... ... ... .. ... 610
16.9 Absolute uncentered correlation . . . . . . ... L. Lo e 610
16.10 Spearman rank correlation . . . . . . . . ... L. L oL e 611
16.11 Kendall’'s 7 . . . . o o o o o e e e e e 611
16.12 Weighting . . . . . o o o e e e e e e e e e e e e e e e e e e e e e e 611
16.13 Calculating the distance matriX . . . . . . . v v v v i v e e e e e e e e e e e e e e e e 611
16.14 Calculating the cluster centroids . . . . . . . . . . . . .. e 612
16.15 Calculating the distance between clusters . . . . . . . . . ... ... Lo o 613




17

18

19

20

21

22

23

24

25

26

16.16 k-means and k-medians . . . . . ... Lo
16.17 k-medoids CluStering . . . . . . . . o i i e e e e e e e e e e e e e e e e e
16.18 Representing a hierarchical clustering solution . . . . . . . . ... . ... ... ...
16.19 Performing hierarchical clustering . . . . . . . . .. . . ... oL
16.20 Calculating the distance matrix . . . . . . . . . . o v vt b e e e e
16.21 Calculating the cluster centroids . . . . . . . . . . . . o e
16.22 Calculating the distance between clusters . . . . . . . . . . . . . . . e
16.23 Performing hierarchical clustering . . . . . . . . . . . . . . L e
16.24 Performing k-means or k-medians clustering . . . . . . . . ... L
16.25 Calculating a Self-Organizing Map . . . . . . . . . . . . o i e
16.26 Saving the clustering result. . . . . . . . . . L.

Supervised learning methods
17.1 The Logistic Regression Model . . . . . . . .. . .. . e
17.2 k-Nearest Neighbors . . . . . . . . . . o e

Graphics including GenomeDiagram
18.1 GenomeDiagram . . . . . . . ... L. e e e e
18.2 ChromosOmes . . . . . . . v i i ittt e e e e e e e

KEGG
19.1 Parsing KEGGrecords . . . . . . . . . o i i e e e
19.2 Queryingthe KEGG APL. . . . . . . . . e

Cookbook — Cool things to do with it

20.1 Working with sequence files . . . . . . . . . . L e
20.2 Sequence parsing plus simple plots . . . . . . ... e
20.3 Dealing with alignments . . . . . . . . . . . o e e e e e e e e e e e e

The Biopython testing framework

21.1 Runningthetests . . . . . . o . it e e e e e e e e e e e e e
21.2 WIItING eSS . . v v o o v e e e e e e e e e e e e e e e e e e e e e e e e e
21.3 Writing doctests . . . . . . .o e e e e e e e

Advanced

22.1 Parser Design . . . . . . . i e e e e e e e e e e e e e e e
222 Substitution MatriCes . . . . . . . o v v it e e e e e e e e e e e e e e e e e e e e
223 FreqTable . . . . . . o L e e e

Where to go from here - contributing to Biopython

23.1 BugReports + Feature Requests . . . . . . . . ... ... L
23.2 Mailing lists and helping newcomers . . . . . . . . . . . .
23.3 Contributing Documentation . . . . . . . . . . ... e e e e e
23.4 Contributing cookbook examples . . . . . . . . . L e e e e
23.5 Maintaining a distribution for a platform . . . . . .. ... oL oo o

Appendix: Useful stuff about Python
24.1 Whatthe heckisahandle? . . . . . . . . . . . . e e

About the contents
25.1 Authorship . . . . . . L L e

References

633
633
638

641
641
654

657
657
658

661
661
702
708

715
715
717
721

723
723
724
727

729
729
729
729
730
730

731
731

733
733

735




test Documentation, Release test

Source of the materials: Biopython cookbook (adapted) Status: Draft

Contents 1



test Documentation, Release test

2 Contents



CHAPTER 1

Biopython

1.1 Tutorial and Cookbook

1 - Introduction

2 - Quick Start

3 - Sequence Objects

4 - Sequence Annotation objects

5 - Sequence Input and Output

6 - Multiple Sequence Alignment objects
7 - Blast

8 - BLAST and other sequence search tools (experimental code)

9 - Accessing NCBI's Entrez databases
10 - Swiss-Prot and ExPASy

11 Going 3D - The PDB module

12 - Bio.PopGen - Population Genetics
13 - Phylogenetics with Bio.Phylo

14 - Sequence motif analysis using Bio.motifs
15 - Cluster Analysis

16 - Supervised learning methods

17 - Graphics including GenomeDiagram
18 - KEGG

19 - Cookbook — Cool things to do with it
20 - The Biopython testing



08%20-%20BLAST%20and%20other%20sequence%20search%20tools%20-%20experimental%20code.ipynb
11%20Going%203D%20-%20The%20PDB%20module.ipynb
19%20-%20Cookbook%20\T1\textendash {}%20Cool%20things%20to%20do%20with%20it.ipynb

test Documentation, Release test

21 - Advanced

22 - Where to go from here — contributing to Biopython
23 - Appendix, Useful stuff about Python

Credits

References

Source of the materials: Biopython Tutorial and Cookbook (adapted)

4 Chapter 1. Biopython


22%20-%20Where%20to%20go%20from%20here%20\T1\textendash {}%20contributing%20to%20Biopython.ipynb

CHAPTER 2

Introduction

2.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (http://www.python.org)
tools for computational molecular biology. Python is an object oriented, interpreted, flexible language that is becoming
increasingly popular for scientific computing. Python is easy to learn, has a very clear syntax and can easily be
extended with modules written in C, C++ or FORTRAN.

The Biopython web site (http://www.biopython.org) provides an online resource for modules, scripts, and web links for
developers of Python-based software for bioinformatics use and research. Basically, the goal of Biopython is to make it
as easy as possible to use Python for bioinformatics by creating high-quality, reusable modules and classes. Biopython
features include parsers for various Bioinformatics file formats (BLAST, Clustalw, FASTA, Genbank,...), access to
online services (NCBI, Expasy,...), interfaces to common and not-so-common programs (Clustalw, DSSP, MSMS....),
a standard sequence class, various clustering modules, a KD tree data structure etc. and even documentation.

Basically, we just like to program in Python and want to make it as easy as possible to use Python for bioinformatics
by creating high-quality, reusable modules and scripts.

2.2 What can | find in the Biopython package

The main Biopython releases have lots of functionality, including:

 The ability to parse bioinformatics files into Python utilizable data structures, including support for the following
formats:

* Blast output — both from standalone and WWW Blast
* Clustalw

* FASTA

e GenBank

* PubMed and Medline
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» ExPASy files, like Enzyme and Prosite
* SCOP, including ‘dom’ and ‘lin’ files
* UniGene

* SwissProt

* Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary
interface.

* Code to deal with popular on-line bioinformatics destinations such as:
¢ NCBI - Blast, Entrez and PubMed services

* ExPASy — Swiss-Prot and Prosite entries, as well as Prosite searches
¢ Interfaces to common bioinformatics programs such as:

 Standalone Blast from NCBI

¢ Clustalw alignment program

* EMBOSS command line tools -A standard sequence class that deals with sequences, ids on sequences, and
sequence features.

¢ Tools for performing common operations on sequences, such as translation, transcription and weight calcula-
tions.

* Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
* Code for dealing with alignments, including a standard way to create and deal with substitution matrices.

* Code making it easy to split up parallelizable tasks into separate processes.

* GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.

» Extensive documentation and help with using the modules, including this file, on-line wiki documentation, the
web site, and the mailing list.

¢ Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

We hope this gives you plenty of reasons to download and start using Biopython!

2.3 About these notebooks

These notebooks were prepared on Python 3 for Project Jupyter 4+ (formely IPython Notebook). Biopython should
be installed and available (v1.66 or newer recommended).

You can check the basic installation and inspect the version by doing:

In [1]: import Bio
print (Bio.__version_ )

1.66

Source of the materials: Biopython cookbook (adapted)
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CHAPTER 3

Quick Start

This section is designed to get you started quickly with Biopython, and to give a general overview of what is available
and how to use it. All of the examples in this section assume that you have some general working knowledge of Python,
and that you have successfully installed Biopython on your system. If you think you need to brush up on your Python,
the main Python web site provides quite a bit of free documentation to get started with (http://www.python.org/doc/).

Since much biological work on the computer involves connecting with databases on the internet, some of the examples
will also require a working internet connection in order to run.

Now that that is all out of the way, let’s get into what we can do with Biopython.

3.1 General overview of what Biopython provides

As mentioned in the introduction, Biopython is a set of libraries to provide the ability to deal with “things” of interest
to biologists working on the computer. In general this means that you will need to have at least some programming
experience (in Python, of course!) or at least an interest in learning to program. Biopython’s job is to make your
job easier as a programmer by supplying reusable libraries so that you can focus on answering your specific question
of interest, instead of focusing on the internals of parsing a particular file format (of course, if you want to help by
writing a parser that doesn’t exist and contributing it to Biopython, please go ahead!). So Biopython’s job is to make

you happy!

One thing to note about Biopython is that it often provides multiple ways of “doing the same thing.” Things have
improved in recent releases, but this can still be frustrating as in Python there should ideally be one right way to do
something. However, this can also be a real benefit because it gives you lots of flexibility and control over the libraries.
The tutorial helps to show you the common or easy ways to do things so that you can just make things work. To learn
more about the alternative possibilities, look in the Cookbook, the Advanced section, the built in “docstrings” (via the
Python help command, or the API documentation) or ultimately the code itself.
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3.2 Working with sequences

We’ll start with a quick introduction to the Biopython mechanisms for dealing with sequences, the Seq object, which
we’ll discuss in more detail later.

Most of the time when we think about sequences we have in my mind a string of letters like ‘AGTACACTGGT’. You
can create such Seq object with this sequence as follows:

In [1]: from Bio.Seg import Seqg
my_seqg = Seq("AGTACACTGGT")
my_seq

Out[1]: Seg('AGTACACIGGT', Alphabet())
In [2]: print (my_seq)

AGTACACTGGT

In [3]: my_seqg.alphabet

Out [3]: Alphabet ()

What we have here is a sequence object with a generic alphabet - reflecting the fact we have not specified if this is a
DNA or protein sequence (okay, a protein with a lot of Alanines, Glycines, Cysteines and Threonines!).

In addition to having an alphabet, the Seq object differs from the Python string in the methods it supports. You can’t
do this with a plain string:

In [4]: my_seqg.complement ()

Out [4]: Seq('TCATGTGACCA', Alphabet ())
In [5]: my_seqg.reverse_complement ()
Out [5]: Seq('ACCAGTGTACT', Alphabet ())

The next most important class is the SeqRecord or Sequence Record. This holds a sequence (as a Seq object) with
additional annotation including an identifier, name and description. The Bio.SeqIO module for reading and writing
sequence file formats works with SeqRecord objects, which will be introduced below and covered in more detail later.

This covers the basic features and uses of the Biopython sequence class. Now that you’ve got some idea of what it is
like to interact with the Biopython libraries, it’s time to delve into the fun, fun world of dealing with biological file
formats!

3.3 A usage example

Before we jump right into parsers and everything else to do with Biopython, let’s set up an example to motivate
everything we do and make life more interesting. After all, if there wasn’t any biology in this tutorial, why would you
want you read it?

Since I love plants, I think we’re just going to have to have a plant based example (sorry to all the fans of other
organisms out there!). Having just completed a recent trip to our local greenhouse, we’ve suddenly developed an
incredible obsession with Lady Slipper Orchids.

Of course, orchids are not only beautiful to look at, they are also extremely interesting for people studying evolution
and systematics. So let’s suppose we’re thinking about writing a funding proposal to do a molecular study of Lady
Slipper evolution, and would like to see what kind of research has already been done and how we can add to that.

After a little bit of reading up we discover that the Lady Slipper Orchids are in the Orchidaceae family and the Cypri-
pedioideae sub-family and are made up of 5 genera: Cypripedium, Paphiopedilum, Phragmipedium, Selenipedium and
Mexipedium.

8 Chapter 3. Quick Start
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That gives us enough to get started delving for more information. So, let’s look at how the Biopython tools can help
us. We’ll start with sequence parsing, but the orchids will be back later on as well - for example we’ll search PubMed
for papers about orchids and extract sequence data from GenBank, extract data from Swiss-Prot from certain orchid
proteins and work with ClustalW multiple sequence alignments of orchid proteins.

3.4 Parsing sequence file formats

A large part of much bioinformatics work involves dealing with the many types of file formats designed to hold
biological data. These files are loaded with interesting biological data, and a special challenge is parsing these files
into a format so that you can manipulate them with some kind of programming language. However the task of parsing
these files can be frustrated by the fact that the formats can change quite regularly, and that formats may contain small
subtleties which can break even the most well designed parsers.

We are now going to briefly introduce the Bio.SeqIO module — you can find out later. We’ll start with an online
search for our friends, the lady slipper orchids. To keep this introduction simple, we’re just using the NCBI website
by hand. Let’s just take a look through the nucleotide databases at NCBI, using an Entrez online search (http://www.
ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide) for everything mentioning the text Cypripedioideae (this is the
subfamily of lady slipper orchids).

When this tutorial was originally written, this search gave us only 94 hits, which we saved as a FASTA formatted text
file and as a GenBank formatted text file (files ls_orchid.fasta and Is_orchid.gbk, also included with the Biopython
source code under docs/tutorial/examples/).

If you run the search today, you’ll get hundreds of results! When following the tutorial, if you want to see the same list
of genes, just download the two files above or copy them from docs/examples/ in the Biopython source code. Below
we will look at how to do a search like this from within Python.

3.4.1 Simple FASTA parsing example

If you open the lady slipper orchids FASTA file Is_orchid.fasta in your favourite text editor, you’ll see that the file
starts like this:

>gil2765658lemblZ78533.11CIZ78533 C.rapeanum 5.8S rRNA gene and ITSI and ITS2
DNA CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTG-
GAATAAACGATCGAGTG AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCC-
CGTGGTGACCCTGATTTGTTGTTGGG ...

It contains 94 records, each has a line starting with “>” (greater-than symbol) followed by the sequence on one or more
lines. Now try this in Python (printing the first 5 records):

In [6]: from Bio import SeqIO
for seq_record in list (SeqIO.parse("data/ls_orchid.fasta", "fasta"))[:5]:
print (seq_record.id)
print (repr (seqg_record.seq))
print (len (seq_record))

gi|2765658|emb|Z278533.1|CIZ78533

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC', SingleLetterAlphabet ())
740

gil2765657 |emb|Z278532.11CCZ78532

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAG. . .GGC"', SingleLetterAlphabet())
753

gil2765656|emb|Z278531.1|CFZ278531

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG. . .TAA', SingleLetterAlphabet())
748

gil2765655|emb|Z278530.1|CMZ78530

3.4. Parsing sequence file formats 9
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Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAAACAACAT. . .CAT', SingleLetterAlphabet())
744

gi|2765654|emb|278529.1|CLZ78529

Seq ('ACGGCGAGCTGCCGAAGGACATTGTTGAGACAGCAGAATATACGATTGAGTGAA. . .AAA"', SingleLetterAlphabet())
733

Notice that the FASTA format does not specify the alphabet, so Bio.SeqlO has defaulted to the rather generic Sin-
gleLetter Alphabet() rather than something DNA specific.

3.4.2 Simple GenBank parsing example

Now let’s load the GenBank file 1s_orchid.gbk instead - notice that the code to do this is almost identical to the snippet
used above for the FASTA file - the only difference is we change the filename and the format string:

In [7]: from Bio import SeqIO
for seq_record in list (SeqIO.parse ("data/ls_orchid.gbk", "genbank")) [:5]:
print (seq_record.id)
print (repr (seq_record.seq))
print (len (seqg_record))

Z278533.1

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC', IUPACAmbiguousDNA ())
740

Z278532.1

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAG. . .GGC', IUPACAmbiguousDNA ())
753

Z278531.1

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG. . .TAA'", IUPACAmbiguousDNA ())
748

Z278530.1

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAAACAACAT. . .CAT', IUPACAmbiguousDNA ())
744

278529.1

Seq ('ACGGCGAGCTGCCGAAGGACATTGTTGAGACAGCAGAATATACGATTGAGTGAA. . .AAA"', IUPACAmbiguousDNA ())
733

This time Bio.SeqlO has been able to choose a sensible alphabet, [IUPAC Ambiguous DNA. You’ll also notice that a
shorter string has been used as the seq_record.id in this case.

3.4.3 | love parsing — please don’t stop talking about it!

Biopython has a lot of parsers, and each has its own little special niches based on the sequence format it is parsing and
all of that.

While the most popular file formats have parsers integrated into Bio.SeqlO and/or Bio.AlignlO, for some of the rarer
and unloved file formats there is either no parser at all, or an old parser which has not been linked in yet. Please also
check the wiki pages http://biopython.org/wiki/SeqlO and http://biopython.org/wiki/AlignlO for the latest informa-
tion, or ask on the mailing list. The wiki pages should include an up to date list of supported file types, and some
additional examples.

The next place to look for information about specific parsers and how to do cool things with them is in the Cookbook.
If you don’t find the information you are looking for, please consider helping out your poor overworked documentors
and submitting a cookbook entry about it! (once you figure out how to do it, that is!)

10 Chapter 3. Quick Start
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3.5 Connecting with biological databases

One of the very common things that you need to do in bioinformatics is extract information from biological databases.
It can be quite tedious to access these databases manually, especially if you have a lot of repetitive work to do.
Biopython attempts to save you time and energy by making some on-line databases available from Python scripts.
Currently, Biopython has code to extract information from the following databases:

¢ Entrez (and PubMed) from the NCBI
¢ ExPASy
* SCOP

The code in these modules basically makes it easy to write Python code that interact with the CGI scripts on these
pages, so that you can get results in an easy to deal with format. In some cases, the results can be tightly integrated
with the Biopython parsers to make it even easier to extract information.

3.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and are ready to
start using it for doing useful work. The best thing to do now is finish reading this tutorial, and then if you want start
snooping around in the source code, and looking at the automatically generated documentation.

Once you get a picture of what you want to do, and what libraries in Biopython will do it, you should take a peak at
the Cookbook (Chapter 18), which may have example code to do something similar to what you want to do.

If you know what you want to do, but can’t figure out how to do it, please feel free to post questions to the main
Biopython list (see http://biopython.org/wiki/Mailing_lists). This will not only help us answer your question, it will
also allow us to improve the documentation so it can help the next person do what you want to do.

Enjoy the code!

Source of the materials: Biopython Tutorial and Cookbook (adapted)
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CHAPTER 4

Sequence Objects

Biological sequences are arguably the central object in Bioinformatics, and in this chapter we’ll introduce the Biopy-
thon mechanism for dealing with sequences, Seq object. Later we will introduce the related SeqRecord object, which
combines the sequence information with any annotation.

Sequences are essentially strings of letters like AGTACACTGGT, which seems very natural since this is the most
common way that sequences are seen in biological file formats.

There are two important differences between Seq objects and standard Python strings. First of all, they have different
methods. Although the Seq object supports many of the same methods as a plain string, its translate() method differs
by doing biological translation, and there are also additional biologically relevant methods like reverse_complement().
Secondly, the Seq object has an important attribute, alphabet, which is an object describing what the individual char-
acters making up the sequence string ‘‘mean’‘, and how they should be interpreted. For example, is AGTACACTGGT
a DNA sequence, or just a protein sequence that happens to be rich in Alanines, Glycines, Cysteines and Threonines?

In [1]: from Bio.Seqg import Seq
from Bio.Alphabet import IUPAC
from Bio.Data import CodonTable
from Bio.SeqUtils import GC

4.1 Sequences and Alphabets

The alphabet object is perhaps the important thing that makes the Seq object more than just a string. The currently
available alphabets for Biopython are defined in the Bio.Alphabet module. We’ll use the [UPAC alphabets (http:
/lwww.chem.qmw.ac.uk/iupac/) here to deal with some of our favorite objects: DNA, RNA and Proteins.

Bio.Alphabet.IUPAC provides basic definitions for proteins, DNA and RNA, but additionally provides the ability to
extend and customize the basic definitions. For instance, for proteins, there is a basic IUPACProtein class, but there is
an additional Extendedl[UPACProtein class providing for the additional elements U'' (orSec” for selenocysteine)
and O'"' (orPyl” for pyrrolysine), plus the ambiguous symbols B'' (orAsx” for asparagine or aspartic acid),
Z''" (orGlIx” for glutamine or glutamic acid), J'' (orXle” for leucine isoleucine) and X'"' (orXxx” for an
unknown amino acid). For DNA you’ve got choices of [UPACUnambiguousDNA, which provides for just the basic
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letters, [UPACAmbiguousDNA (which provides for ambiguity letters for every possible situation) and ExtendedIU-
PACDNA, which allows letters for modified bases. Similarly, RNA can be represented by [UPACAmbiguousRNA or
IUPACUnambiguousRNA.

The advantages of having an alphabet class are two fold. First, this gives an idea of the type of information the Seq
object contains. Secondly, this provides a means of constraining the information, as a means of type checking.

Now that we know what we are dealing with, let’s look at how to utilize this class to do interesting work. You can
create an ambiguous sequence with the default generic alphabet like this:

In [2]: my_seq = Seq("AGTACACTGGT")
my_seq

Out[2]: Seqg('AGTACACIGGT', Alphabet())
In [3]: my_seqg.alphabet
Out [3]: Alphabet ()

However, where possible you should specify the alphabet explicitly when creating your sequence objects - in this case
an unambiguous DNA alphabet object:

In [4]: from Bio.Alphabet import IUPAC
my_seqg = Seq("AGTACACTGGT", IUPAC.unambiguous_dna)
my_seq

Out[4]: Seqg('AGTACACTGGT', IUPACUnambiguousDNA())
In [5]: my_seqg.alphabet

Out [5] : IUPACUnambiguousDNA ()

Unless of course, this really is an amino acid sequence:

In [6]: my_prot = Seq("AGTACACTIGGT", IUPAC.protein)
my_prot

Out[6]: Seqg('AGTACACTGGT', IUPACProtein())
In [7]: my_prot.alphabet

Out [7]: IUPACProtein ()

4.2 Sequences act like strings

In many ways, we can deal with Seq objects as if they were normal Python strings, for example getting the length, or
iterating over the elements:

In [8]: my_seq = Seq("GATCG", IUPAC.unambiguous_dna)
for index, letter in enumerate (my_seq) :

print ("$i %$s" % (index, letter))
print (len (my_seq))

g W NP o
QA ¥PaQ

You can access elements of the sequence in the same way as for strings (but remember, Python counts from zero!):

In [9]: print (my_seq[0]) #first letter
print (my_seq[2]) #third letter
print (my_seqg[-1]) #last letter
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G
T
G

The Seq object has a .count() method, just like a string. Note that this means that like a Python string, this gives a
non-overlapping count:

In [10]: print ("AAAA".count ("AA"))
print (Seqg("AAAA") .count ("AA"))

2
2

For some biological uses, you may actually want an overlapping count (i.e. 3 in this trivial example). When searching
for single letters, this makes no difference:

In [11]: my_seqg = Seq('GATCGATGGGCCTATATAGGATCGAAAATCGC', IUPAC.unambiguous_dna)
print (len (my_seq))
print (my_seqg.count ("G"))
print (100 % float (my_seq.count ("G") + my_seqg.count ("C")) / len(my_seq))

32
9
46.875

While you could use the above snippet of code to calculate a GC%, note that the Bio.SeqUtils module has several GC
functions already built. For example:

In [12]: my_seqg = Seq('GATCGATGGGCCTATATAGGATCGAAAATCGC', IUPAC.unambiguous_dna)
GC (my_seq)

Out[12]: 46.875

Note that using the Bio.SeqUtils.GC() function should automatically cope with mixed case sequences and the am-
biguous nucleotide S which means G or C.

Also note that just like a normal Python string, the Seq object is in some ways ‘‘read-only’ ‘. If you need to edit your
sequence, for example simulating a point mutation, look at the Section sec:mutable-seq below which talks about the
MutableSeq object.

4.3 Slicing a sequence

A more complicated example, let’s get a slice of the sequence:

In [13]: my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
my_seq[4:12]

Out[13]: Seg('GATGGGCC', IUPACUnambiguousDNA ())

Two things are interesting to note. First, this follows the normal conventions for Python strings. So the first element of
the sequence is 0 (which is normal for computer science, but not so normal for biology). When you do a slice the first
item is included (i.e.~4 in this case) and the last is excluded (12 in this case), which is the way things work in Python,
but of course not necessarily the way everyone in the world would expect. The main goal is to stay consistent with
what Python does.

The second thing to notice is that the slice is performed on the sequence data string, but the new object produced is
another Seq object which retains the alphabet information from the original Seq object.

Also like a Python string, you can do slices with a start, stop and stride (the step size, which defaults to one). For
example, we can get the first, second and third codon positions of this DNA sequence:
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In [14]: print (my_seq[0::3])
print (my_seq[l::3])
print (my_seq[2::3])

GCTGTAGTAAG
AGGCATGCATC
TAGCTAAGAC

Another stride trick you might have seen with a Python string is the use of a -1 stride to reverse the string. You can do
this with a Seq object too:

In [15]: my_seq[::-1]

Out[15]: Seg('CGCTAAAAGCTAGGATATATCCGGGTAGCTAG', IUPACUnambiguousDNA())

4.4 Turning Seq objects into strings

If you really do just need a plain string, for example to write to a file, or insert into a database, then this is very easy to
get:

In [16]: str(my_seq)
Out[16]: '"GATCGATGGGCCTATATAGGATCGAAAATCGC'

Since calling str() on a Seq object returns the full sequence as a string, you often don’t actually have to do this
conversion explicitly. Python does this automatically in the print function:

In [17]: print (my_seq)
GATCGATGGGCCTATATAGGATCGAAAATCGC

You can also use the Seq object directly with a %s placeholder when using the Python string formatting or interpolation
operator (%):

In [18]: fasta_format_string = ">Name\n%s\n" % my_seq
print (fasta_format_string)

>Name
GATCGATGGGCCTATATAGGATCGAAAATCGC

This line of code constructs a simple FASTA format record (without worrying about line wrapping). Later we will
describe a neat way to get a FASTA formatted string from a SeqRecord object.

In [19]: my_seqg.tostring()

/home/tiago_antao/miniconda/lib/python3.5/site-packages/Bio/Seq.py:343: BiopythonDeprecationWarning:
BiopythonDeprecationWarning)

Out [19]: 'GATCGATGGGCCTATATAGGATCGAAAATCGC'

4.5 Concatenating or adding sequences

Naturally, you can in principle add any two Seq objects together - just like you can with Python strings to concate-
nate them. However, you can’t add sequences with incompatible alphabets, such as a protein sequence and a DNA
sequence:

In [20]: protein_seq = Seg("EVRNAK", IUPAC.protein)
dna_seq = Seqg("ACGT", IUPAC.unambiguous_dna)
try:

protein_seqg + dna_seq
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except TypeError as e:
print (e)

Incompatible alphabets IUPACProtein() and IUPACUnambiguousDNA ()
If you really wanted to do this, you’d have to first give both sequences generic alphabets:

In [21]: from Bio.Alphabet import generic_alphabet
protein_seqg.alphabet = generic_alphabet
dna_seqg.alphabet = generic_alphabet
protein_seq + dna_seq

Out[21]: Seqg('EVRNAKACGT', Alphabet())

Here is an example of adding a generic nucleotide sequence to an unambiguous [UPAC DNA sequence, resulting in
an ambiguous nucleotide sequence:

In [22]: from Bio.Alphabet import generic_nucleotide
nuc_seq = Seq("GATCGATGC", generic_nucleotide)
dna_seq = Seqg("ACGT", IUPAC.unambiguous_dna)
nuc_seq

Out [22]: Seqg('GATCGATGC', NucleotideAlphabet ())

In [23]: dna_seq

Out[23]: Seqg('ACGT', IUPACUnambiguousDNA ())

In [24]: nuc_seq + dna_seq

Out[24]: Seqg('GATCGATGCACGT', NucleotideAlphabet ())

You may often have many sequences to add together, which can be done with a for loop like this:

In [25]: from Bio.Alphabet import generic_dna
list_of_segs = [Seg("ACGT", generic_dna), Seg("AACC", generic_dna), Seqg("GGTT", generic_dna]
concatenated = Seqg("", generic_dna)
for s in list_of_segs:
concatenated += s
concatenated

Out [25]: Seqg('ACGTAACCGGTT', DNAAlphabet ())

Or, a more elegant approach is to the use built in sum function with its optional start value argument (which otherwise
defaults to zero):

In [26]: list_of_segs = [Seq("ACGT", generic_dna), Seqg("AACC", generic_dna), Seq("GGTT", generic_dna,
sum(list_of_segs, Seqg("", generic_dna))

Out[26]: Seg('ACGTAACCGGTT', DNAAlphabet())

Unlike the Python string, the Biopython Seq does not (currently) have a .join method.

4.6 Changing case

Python strings have very useful upper and lower methods for changing the case. As of Biopython 1.53, the Seq object
gained similar methods which are alphabet aware. For example,

In [27]: dna_seq = Seq("acgtACGT", generic_dna)
print (dna_seq)
print (dna_seqg.upper())
print (dna_seq.lower ())
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acgtACGT
ACGTACGT
acgtacgt

These are useful for doing case insensitive matching:

In [28]: print ("GTAC" in dna_seq)
print ("GTAC" in dna_seqg.upper())

False
True

Note that strictly speaking the [UPAC alphabets are for upper case sequences only, thus:

In [29]: dna_seq = Seqg("ACGT", IUPAC.unambiguous_dna)
dna_seq

Out[29]: Seg('ACGT', IUPACUnambiguousDNA())
In [30]: dna_seq.lower ()

Out [30]: Seg('acgt', DNAAlphabet ())

4.7 Nucleotide sequences and (reverse) complements

For nucleotide sequences, you can easily obtain the complement or reverse complement of a Seq object using its
built-in methods:

In [31]: my_seqg = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna)
print (my_seq)
print (my_seqg.complement () )
print (my_seq.reverse_complement ())

GATCGATGGGCCTATATAGGATCGAAAATCGC
CTAGCTACCCGGATATATCCTAGCTTTTAGCG
GCGATTTTCGATCCTATATAGGCCCATCGATC

As mentioned earlier, an easy way to just reverse a Seq object (or a Python string) is slice it with -1 step:
In [32]: my_seq[::-1]
Out [32]: Seq('CGCTAAAAGCTAGGATATATCCGGGTAGCTAG', IUPACUnambiguousDNA ())

In all of these operations, the alphabet property is maintained. This is very useful in case you accidentally end up
trying to do something weird like take the (reverse)complement of a protein sequence:

In [33]: protein_seqg = Seqg("EVRNAK", IUPAC.protein)
try:
protein_seqg.complement ()
except ValueError as e:
print (e)

Proteins do not have complements!

4.8 Transcription

Before talking about transcription, I want to try and clarify the strand issue. Consider the following (made up) stretch
of double stranded DNA which encodes a short peptide:
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DNA coding strand (Crick strand, strand +1)

5’ | ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG 3
3’ | TACCGGTAACATTACCCGGCGACTTTCCCACGGGCTATC 5
DNA template strand (Watson strand, strand -1)
Transcription

5’ | AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG} | 3’
Single stranded messenger RNA

The actual biological transcription process works from the template strand, doing a reverse complement (TCAG ->
CUGA) to give the mRNA. However, in Biopython and bioinformatics in general, we typically work directly with the
coding strand because this means we can get the mRNA sequence just by switching T -> U.

Now let’s actually get down to doing a transcription in Biopython. First, let’s create Seq objects for the coding and
template DNA strands:

In [34]: coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG", IUPAC.unambiguous_dna)
print (coding_dna)
template_dna = coding_dna.reverse_complement ()
print (template_dna)

ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG
CTATCGGGCACCCTTTCAGCGGCCCATTACAATGGCCAT

These should match the figure above - remember by convention nucleotide sequences are normally read from the 5’ to
3’ direction, while in the figure the template strand is shown reversed.

Now let’s transcribe the coding strand into the corresponding mRNA, using the Seq object’s built in transcribe method:

In [35]: messenger_rna = coding_dna.transcribe ()
messenger_rna

Out [35]: Seqg('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG', IUPACUnambiguousRNA ())
As you can see, all this does is switch T — U, and adjust the alphabet.

If you do want to do a true biological transcription starting with the template strand, then this becomes a two-step
process:

In [36]: template_dna.reverse_complement () .transcribe ()
Out [36]: Seqg('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG', IUPACUnambiguousRNA ())

The Seq object also includes a back-transcription method for going from the mRNA to the coding strand of the DNA.
Again, this is a simple U — T substitution and associated change of alphabet:

In [37]: messenger_rna.back_transcribe ()

Out [37]: Seqg('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG', IUPACUnambiguousDNA ())

4.9 Translation

Sticking with the same example discussed in the transcription section above, now let’s translate this mRNA into the
corresponding protein sequence - again taking advantage of one of the Seq object’s biological methods:

In [38]: messenger_rna.translate()

Out [38]: Seqg('MAIVMGR*KGARx', HasStopCodon (IUPACProtein(), 'x'))
You can also translate directly from the coding strand DNA sequence:

In [39]: coding_dna.translate()

Out [39]: Seqg('MAIVMGR*KGARx', HasStopCodon (IUPACProtein(), 'x'))
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You should notice in the above protein sequences that in addition to the end stop character, there is an internal stop as
well. This was a deliberate choice of example, as it gives an excuse to talk about some optional arguments, including
different translation tables (Genetic Codes).

The translation tables available in Biopython are based on those http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/
wprintge.c {from the NCBI} (see the next section of this tutorial). By default, translation will use the standard
genetic code (NCBI table id 1). Suppose we are dealing with a mitochondrial sequence. We need to tell the translation
function to use the relevant genetic code instead:

In [40]: coding_dna.translate (table="Vertebrate Mitochondrial")
Out [40]: Seqg('MAIVMGRWKGAR=x', HasStopCodon (IUPACProtein(), 'x'))

You can also specify the table using the NCBI table number which is shorter, and often included in the feature anno-
tation of GenBank files:

In [41]: coding_dna.translate (table=2)
Out [41]: Seqg('MAIVMGRWKGARx', HasStopCodon (IUPACProtein(), 'x'))

Now, you may want to translate the nucleotides up to the first in frame stop codon, and then stop (as happens in nature):

In [42]: coding_dna.translate()
Out [42]: Seqg('MAIVMGR*KGARx', HasStopCodon (IUPACProtein(), 'x'))
In [43]: coding_dna.translate (to_stop=True)

Out [43]: Seq('MAIVMGR', IUPACProtein())

In [44]: coding_dna.translate (table=2)

Out [44]: Seqg('MAIVMGRWKGARx', HasStopCodon (IUPACProtein(), 'x'))
In [45]: coding_dna.translate (table=2, to_stop=True)

Out [45]: Seqg('MAIVMGRWKGAR', IUPACProtein())

Notice that when you use the to_stop argument, the stop codon itself is not translated - and the stop symbol is not
included at the end of your protein sequence.

You can even specify the stop symbol if you don’t like the default asterisk:
In [46]: coding_dna.translate(table=2, stop_symbol="@")
Out[46]: Seg('MAIVMGRWKGAR@', HasStopCodon (IUPACProtein(), '@"'))

Now, suppose you have a complete coding sequence CDS, which is to say a nucleotide sequence (e.g. mRNA — after
any splicing) which is a whole number of codons (i.e. the length is a multiple of three), commences with a start codon,
ends with a stop codon, and has no internal in-frame stop codons. In general, given a complete CDS, the default
translate method will do what you want (perhaps with the to_stop option). However, what if your sequence uses a
non-standard start codon? This happens a lot in bacteria — for example the gene yaaX in E. coli K12:

In [47]: gene = Seq("GTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCA"
"GCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGTAAAATTACAGATAGGCGATCGTGAT"
"AATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACAT"
"TATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCAT"
"AAGAAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAA",
generic_dna)

gene.translate (table="Bacterial")

+ o+ + o+

Oout [47]: Seqg('VKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. ..HR*', HasStopCodon (ExtendedIUl
In [48]: gene.translate (table="Bacterial", to_stop=True)

Out [48]: Seqg('VKKMQOSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. ..HHR', ExtendedIUPACProtein())
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In the bacterial genetic code GTG is a valid start codon, and while it does normally encode Valine, if used as a start
codon it should be translated as methionine. This happens if you tell Biopython your sequence is a complete CDS:

In [49]: gene.translate(table="Bacterial", cds=True)
Out[49]: Seqg('MKKMQSIVLALSLVLVAPMAAQAAEITLVPSVKLQIGDRDNRGYYWDGGHWRDH. ..HHR', ExtendedIUPACProtein())

In addition to telling Biopython to translate an alternative start codon as methionine, using this option also makes sure
your sequence really is a valid CDS (you’ll get an exception if not).

4.10 Translation Tables

In the previous sections we talked about the Seq object translation method (and mentioned the equivalent function in
the Bio.Seq module). Internally these use codon table objects derived from the NCBI information at ftp://ftp.ncbi.nlm.
nih.gov/entrez/misc/data/gc.prt, also shown on http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi in a much
more readable layout.

As before, let’s just focus on two choices: the Standard translation table, and the translation table for Vertebrate
Mitochondrial DNA.

In [50]: standard_table = CodonTable.unambiguous_dna_by_name["Standard"]
mito_table = CodonTable.unambiguous_dna_by_name["Vertebrate Mitochondrial"]

Alternatively, these tables are labeled with ID numbers 1 and 2, respectively:

In [51]: standard_table = CodonTable.unambiguous_dna_by_id[1]
mito_table = CodonTable.unambiguous_dna_by_id[2]

You can compare the actual tables visually by printing them:
In [52]: print (standard_table)

Table 1 Standard, SGCO

| T | C | A | G |
R fommm————— fommmm———— fomm +——
T | TTT F | TCT S | TAT Y | TGT C | T
T | TIC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA Stop| A
T | TTG L(s)| TCG S | TAG Stop| TGG W | G
e Fom e fom +-=
C | CITT L | CCT P | CAT H | CGT R | T
C | CIC L | ccc P | CAC H | CGC R | C
C | CTA L | CCA P | CAA Q | CGA R | A
C | CTG L(s)| CCG P | CAG Q | CGG R | G
e e fomm e R +——
A | ATT I | ACT T | AAT N | AGT S | T
A | ATC I | ACC T | AAC N | AGC S | C
A | ATA I | ACA T | AAA K | AGA R | A
A | ATG M(s)| ACG T | AAG K | AGG R | G
e fommm fommm tomm +—-
G | GIT V | GCT A | GAT D | GGT G | T
G | GIC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A
G | GIG V | GCG A | GAG E | GGG G | G
e Fomm e fom +-=

In [53]: print (mito_table)

Table 2 Vertebrate Mitochondrial, SGC1
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| T | C | A | G \
-t F——— f——— F——— +——
T | TIT F | TCT S | TAT Y | TGT C | T
T | TIC F | TCC S | TAC Y | TGC C | C
T | TTA L | TCA S | TAA Stop| TGA W | A
T | TTG L | TCG S | TAG Stop| TGG W | G
—t f————— F————— F————— +—-
C | CIT L | CCT P | CAT H | CGT R | T
C | CIC L | CCcC P | CAC H | CGC R | C
C | CTA L | CCA P | CAA Q | CGA R | A
C | CIG L | CCG P | CAG Q | CGG R | G
i Fmm Fm—————— Fomm +-=
A | ATT I(s)| ACT T | AAT N | AGT S | T
A | ATC I(s)| ACC T | AAC N | AGC S | C
A | ATA M(s)| ACA T | AAA K | AGA Stop| A
A | ATG M(s)| ACG T | AAG K | AGG Stopl| G
-t - f——— f——— +——
G | GIT V | GCT A | GAT D | GGT G | T
G | GIC V | GCC A | GAC D | GGC G | C
G | GTA V | GCA A | GAA E | GGA G | A
G | GTG V(s)| GCG A | GAG E | GGG G | G
—t F————— F————— F————— +—-

You may find these following properties useful — for example if you are trying to do your own gene finding:

In [54]: print (mito_table.stop_codons)
print (mito_table.start_codons)
print (mito_table.forward_table["ACG"])
['"TAA', 'TAG', '"AGA', 'AGG']
['ATT', 'ATC', 'ATA', 'ATG', 'GTG']
T

4.11 Comparing Seq objects

Sequence comparison is actually a very complicated topic, and there is no easy way to decide if two sequences are
equal. The basic problem is the meaning of the letters in a sequence are context dependent - the letter ‘°‘A” could be
part of a DNA, RNA or protein sequence. Biopython uses alphabet objects as part of each Seq object to try and capture
this information - so comparing two Seq objects means considering both the sequence strings and the alphabets.

For example, you might argue that the two DNA Seq objects Seq(“ACGT”, ITUPAC.unambiguous_dna) and
Seq(“ACGT”, IUPAC.ambiguous_dna) should be equal, even though they do have different alphabets. Depending
on the context this could be important.

This gets worse — suppose you think Seq(“ACGT”, IUPAC.unambiguous_dna) and Seq(“ACGT”) (i.e. the default
generic alphabet) should be equal. Then, logically, Seq(“ACGT”, IUPAC.protein) and Seq(“ACGT”) should also be
equal. Now, in logic if A = B and B = C, by transitivity we expect A = C. So for logical consistency we’d
require Seq(“ACGT”, IUPAC.unambiguous_dna) and Seq(“ACGT”, IUPAC.protein) to be equal — which most people
would agree is just not right. This transitivity problem would also have implications for using Seq objects as Python
dictionary keys.

In [55]: seql = Seg("ACGT", IUPAC.unambiguous_dna)
seqg2 = Seq("ACGT", IUPAC.unambiguous_dna)

So, what does Biopython do? Well, the equality test is the default for Python objects — it tests to see if they are the
same object in memory. This is a very strict test:

In [56]: print (seql == seqg2)
print (seql == seql)
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True
True

If you actually want to do this, you can be more explicit by using the Python id function,

In [57]: print (id(segl) == id(seqg2))
print (id(seqgl) == id(seql))

False

True

Now, in every day use, your sequences will probably all have the same alphabet, or at least all be the same type of
sequence (all DNA, all RNA, or all protein). What you probably want is to just compare the sequences as strings — so
do this explicitly:

In [58]: print(str(seqgl) == str(seg2))
print (str(seql) == str(seql))

True

True

As an extension to this, while you can use a Python dictionary with Seq objects as keys, it is generally more useful to
use the sequence a string for the key.

4.12 MutableSeq Objects

Just like the normal Python string, the Seq object is ‘‘read only’‘, or in Python terminology, immutable. Apart from
wanting the Seq object to act like a string, this is also a useful default since in many biological applications you want
to ensure you are not changing your sequence data:

In [59]: my_seqg = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)
Observe what happens if you try to edit the sequence:

In [60]: try:

my_seq[5] = "G"
except Exception as e:
print (e)

'Seq' object does not support item assignment

However, you can convert it into a mutable sequence (a MutableSeq object) and do pretty much anything you want
with it
In [61]: mutable_seqg = my_seq.tomutable ()

mutable_seq

Out [61]: MutableSeqg('GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA', IUPACUnambiguousDNA())

Alternatively, you can create a MutableSeq object directly from a string:

In [62]: from Bio.Seqg import MutableSeq
mutable_seq = MutableSeq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)

Either way will give you a sequence object which can be changed:

In [63]: mutable_seqg[5] = "C"
print (mutable_seq)
mutable_seq.remove ("T")
print (mutable_seq)
mutable_seq.reverse ()
print (mutable_seq)
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GCCATCGTAATGGGCCGCTGAAAGGGTGCCCGA
GCCACGTAATGGGCCGCTGAAAGGGTGCCCGA
AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG

Do note that unlike the Seq object, the MutableSeq object’s methods like reverse_complement() and reverse() act
in-situ!

An important technical difference between mutable and immutable objects in Python means that you can’t use a
MutableSeq object as a dictionary key, but you can use a Python string or a Seq object in this way.

Once you have finished editing your a MutableSeq object, it’s easy to get back to a read-only Seq object should you
need to:

In [64]: new_seq = mutable_seqg.toseq()
new_seq

Out [64]: Seqg('AGCCCGTGGGAAAGTCGCCGGGTAATGCACCG', IUPACUnambiguousDNA ())

You can also get a string from a MutableSeq object just like from a Seq object.

4.13 UnknownSeq Objects

The UnknownSeq object is a subclass of the basic Seq object and its purpose is to represent a sequence where we
know the length, but not the actual letters making it up. You could of course use a normal Seq object in this situation,
but it wastes rather a lot of memory to hold a string of a million N'' characters when you could just
store a single letterN” and the desired length as an integer.

In [65]: from Bio.Seqg import UnknownSeq
unk = UnknownSeq(20)
unk

Out [65]: UnknownSeq (20, alphabet = Alphabet (), character = '?")

In [66]: print (unk)
print (len (unk))

AR A R R A R R A A R A Ar R e A ard

You can of course specify an alphabet, meaning for nucleotide sequences the letter defaults to ‘N’ and for proteins
‘X’, rather than just “?”.

In [67]: unk_dna = UnknownSeq (20, alphabet=IUPAC.ambiguous_dna)
unk_dna

Out [67]: UnknownSeq (20, alphabet = IUPACAmbiguousDNA (), character = 'N')
In [68]: print (unk_dna)
NNNNNNNNNNNNNNNNNNNN

You can use all the usual Seq object methods too, note these give back memory saving UnknownSeq objects where
appropriate as you might expect:

In [69]: unk_dna

Out [69]: UnknownSeq (20, alphabet = IUPACAmbiguousDNA (), character = 'N')
In [70]: unk_dna.complement ()

Out [70] : UnknownSeq (20, alphabet = IUPACAmbiguousDNA (), character = 'N')
In [71]: unk_dna.reverse_complement ()

Out [71]: UnknownSeq (20, alphabet = IUPACAmbiguousDNA (), character = 'N')
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In [72]: unk_dna.transcribe ()
Out [72]: UnknownSeq (20, alphabet = IUPACAmbiguousRNA (), character = 'N')
In [73]: unk_protein = unk_dna.translate ()

unk_protein
Out [73]: UnknownSeq (6, alphabet = ProteinAlphabet (), character = 'X'")

In [74]: print (unk_protein)
print (len (unk_protein))

XXXXXX
6

You may be able to find a use for the UnknownSeq object in your own code, but it is more likely that you will first
come across them in a SeqRecord object created by Bio.SeqlO. Some sequence file formats don’t always include the
actual sequence, for example GenBank and EMBL files may include a list of features but for the sequence just present
the contig information. Alternatively, the QUAL files used in sequencing work hold quality scores but they never
contain a sequence — instead there is a partner FASTA file which does have the sequence.

4.14 Working with strings directly

To close this chapter, for those you who really don’t want to use the sequence objects (or who prefer a functional
programming style to an object orientated one), there are module level functions in Bio.Seq will accept plain Python
strings, Seq objects (including UnknownSeq objects) or MutableSeq objects:

In [75]: from Bio.Seqg import reverse_complement, transcribe, back_transcribe, translate
my_string = "GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTIGGTTAG"
print (reverse_complement (my_string))
print (transcribe (my_string))
print (back_transcribe (my_string))
print (translate (my_string))

CTAACCAGCAGCACGACCACCCTTCCAACGACCCATAACAGC
GCUGUUAUGGGUCGUUGGAAGGGUGGUCGUGCUGCUGGUUAG
GCTGTTATGGGTCGTTGGAAGGGTGGTCGTGCTGCTGGTTAG
AVMGRWKGGRAAG*

You are, however, encouraged to work with Seq objects by default.

Source of the materials: Biopython Tutorial and Cookbook (adapted)
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CHAPTER B

Sequence annotation objects

The previous notebook introduced the sequence classes. Immediately ‘‘above” the Seq class is the Sequence Record or
SeqRecord class, defined in the Bio.SeqRecord module. This class allows higher level features such as identifiers and
features (as SeqFeature objects) to be associated with the sequence, and is used throughout the sequence input/output
interface Bio.SeqlO described fully in another notebook.

If you are only going to be working with simple data like FASTA files, you can probably skip this chapter for now. If
on the other hand you are going to be using richly annotated sequence data, say from GenBank or EMBL files, this
information is quite important.

While this chapter should cover most things to do with the :raw-latex:‘\verblSeqRecordl‘ and :raw-
latex:‘\verblSeqFeaturel* objects in this chapter, you may also want to read the SeqRecord wiki page
(http://biopython.org/wiki/SeqRecord), and the built in documentation (also online — http://biopython.org/DIST/
docs/api/Bio.SeqRecord.SeqRecord-class.html - SeqRecord and http://biopython.org/DIST/docs/api/Bio.SeqFeature.
SeqFeature-class.html - SeqFeature):

In [1]: from Bio import SeqIO, SegFeature
from Bio.Alphabet import SinglelLetterAlphabet, generic_protein
from Bio.Alphabet.IUPAC import IUPACAmbiguousDNA
from Bio.SegFeature import FeatureLocation
from Bio.SegRecord import SegRecord

5.1 The SeqRecord Object

The SeqRecord (Sequence Record) class is defined in the Bio.SeqRecord module. This class allows higher level
features such as identifiers and features to be associated with a sequence, and is the basic data type for the Bio.SeqlO
sequence input/output interface.

The SeqRecord class itself is quite simple, and offers the following information as attributes:
* .seq - The sequence itself, typically a Seq object.

¢ .id - The primary ID used to identify the sequence - a string. In most cases this is something like an accession
number.
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e .name - A ‘common’ name/id for the sequence - a string. In some cases this will be the same as the accession
number, but it could also be a clone name. I think of this as being analogous to the LOCUS id in a GenBank
record.

¢ .description - A human readable description or expressive name for the sequence - a string.

* .letter_annotations - Holds per-letter-annotations using a (restricted) dictionary of additional information about
the letters in the sequence. The keys are the name of the information, and the information is contained in the
value as a Python sequence (i.e. a list, tuple or string) with the same length as the sequence itself. This is often
used for quality scores or secondary structure information (e.g. from Stockholm/PFAM alignment files).

 .annotations - A dictionary of additional information about the sequence. The keys are the name of the informa-
tion, and the information is contained in the value. This allows the addition of more ‘unstructured’ information
to the sequence.

« features - A list of SeqFeature objects with more structured information about the features on a sequence (e.g.
position of genes on a genome, or domains on a protein sequence).

¢ .dbxrefs - A list of database cross-references as strings.

5.2 Creating a SeqRecord

Using a SeqRecord object is not very complicated, since all of the information is presented as attributes of the class.
Usually you won’t create a SeqRecord ‘by hand’, but instead use Bio.SeqlO to read in a sequence file for you and the
examples below). However, creating SeqRecord can be quite simple.

5.2.1 SeqRecord objects from scratch

To create a SeqRecord at a minimum you just need a Seq object:

In [2]: from Bio.Seqg import Seq
from Bio.SegRecord import SegRecord

In [3]: simple_seq = Seg("GATC")
print (simple_seq)
simple_seq r = SeqRecord(simple_seq)
print (simple_seq r)

GATC

ID: <unknown id>

Name: <unknown name>

Description: <unknown description>
Number of features: 0

Seq ('GATC', Alphabet())

Additionally, you can also pass the id, name and description to the initialization function, but if not they will be set as
strings indicating they are unknown, and can be modified subsequently:

In [4]: simple_seq_r.id
simple_seq_r.id = "AC12345"
simple_seq_r.description = "Made up sequence I wish I could write a paper about"

print (simple_seqg r.description)
simple_seq_r.seq
print (simple_seq r.seq)

Made up sequence I wish I could write a paper about
GATC
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Including an identifier is very important if you want to output your SeqRecord to a file. You would normally include
this when creating the object:

In [5]: simple_seqg = Seqg("GATC")
print (simple_seq)
simple_seq_r = SeqRecord(simple_seq, 1d="AC12345")
print (simple_seq_r)

GATC

ID: AC12345

Name: <unknown name>

Description: <unknown description>
Number of features: 0

Seq ('GATC', Alphabet())

As mentioned above, the SeqRecord has an dictionary attribute annotations. This is used for any miscellaneous
annotations that doesn’t fit under one of the other more specific attributes. Adding annotations is easy, and just
involves dealing directly with the annotation dictionary:

In [6]: simple_seq_r.annotations["evidence"] = "None. I just made it up."
print (simple_seq_r.annotations)
print (simple_seq_r.annotations["evidence"])

{'evidence': 'None. I just made it up.'}
None. I just made it up.

Working with per-letter-annotations is similar, letter_annotations is a dictionary like attribute which will let you assign
any Python sequence (i.e. a string, list or tuple) which has the same length as the sequence:

In [7]: simple_seq r.letter_annotations|["phred_quality"] = [40, 40, 38, 30]
print (simple_seq_r.letter_annotations)
print (simple_seqg r.letter_annotations["phred_quality"])

{'phred_quality': [40, 40, 38, 30]}
[40, 40, 38, 30]

The dbxrefs and features attributes are just Python lists, and should be used to store strings and SeqFeature objects
(discussed later) respectively.

5.2.2 SeqRecord objects from FASTA files

This example uses a fairly large FASTA file containing the whole sequence for :raw-latex:‘\textit{Yersinia pestis
biovar Microtus}* str. 91001 plasmid pPCP1, originally downloaded from the NCBI. This file is included with the
Biopython unit tests under the GenBank folder, or online (http://biopython.org/SRC/biopython/Tests/GenBank/NC_
005816.fna) from our website.

The file starts like this - and you can check there is only one record present (i.e. only one line starting with a greater
than symbol):

>gi 45478711 |ref|NC_005816.1| Yersinia pestis biovar Microtus ... pPCPl, complete
—sequence
TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

In a previous notebook you will have seen the function Bio.SeqlO.parse used to loop over all the records in a file as
SeqRecord objects. The Bio.SeqlO module has a sister function for use on files which contain just one record which
we’ll use here:

In [8]: record = SeqIO.read("data/NC_005816.fna", "fasta")
print (record)
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ID: gil45478711|ref|NC_005816.1]

Name: gi|45478711|ref|NC_005816.1|

Description: gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1,
Number of features: 0

Seq ('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG', SinglelLetterAlphabet())

Now, let’s have a look at the key attributes of this SeqRecord individually - starting with the seq attribute which gives
you a Seq object:

In [9]: record.seq
Out[9]: Seqg('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. ..CTG', SinglelLetterAlphabet ())

Here Bio.SeqlO has defaulted to a generic alphabet, rather than guessing that this is DNA. If you know in advance
what kind of sequence your FASTA file contains, you can tell Bio.SeqlO which alphabet to use.

Next, the identifiers and description:

In [10]: print (record.id)
print (record.name)
print (record.description)

gi|45478711|ref|NC_005816.1]
gi|145478711|ref|NC_005816.1]

(

gi|45478711|ref|NC_005816.1| Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequc

As you can see above, the first word of the FASTA record’s title line (after removing the greater than symbol) is
used for both the id and name attributes. The whole title line (after removing the greater than symbol) is used for the
record description. This is deliberate, partly for backwards compatibility reasons, but it also makes sense if you have
a FASTA file like this:

>Yersinia pestis biovar Microtus str. 91001 plasmid pPCP1l
TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGGGGGTAATCTGCTCTCC

Note that none of the other annotation attributes get populated when reading a FASTA file:

record.dbxrefs)
record.annotations)
record.letter_annotations)
record. features)

In [11]: print
print
print
print

[]
{1
{}
[]

In this case our example FASTA file was from the NCBI, and they have a fairly well defined set of conventions for
formatting their FASTA lines. This means it would be possible to parse this information and extract the GI number
and accession for example. However, FASTA files from other sources vary, so this isn’t possible in general.

5.2.3 SeqRecord objects from GenBank files

As in the previous example, we’re going to look at the whole sequence for Yersinia pestis biovar Microtus str. 91001
plasmid pPCP1, originally downloaded from the NCBI, but this time as a GenBank file.

This file contains a single record (i.e. only one LOCUS line) and starts:

LOCUS NC_005816 9609 bp DNA circular BCT 21-JUL-2008
DEFINITION Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete
sequence.
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ACCESSION NC_005816
VERSION NC_005816.1 GI:45478711
PROJECT GenomeProject:10638

Again, we’ll use Bio.SeqlO to read this file in, and the code is almost identical to that for used above for the FASTA
file:

In [12]: record = SeqlO.read("data/NC_005816.gb", "genbank")
print (record)

ID: NC_005816.1

Name: NC_005816

Description: Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.

Database cross-references: Project:58037

Number of features: 41

/taxonomy=['Bacteria', 'Proteobacteria', 'Gammaproteobacteria', 'Enterobacteriales', 'Enterobacteriac
/comment=PROVISIONAL REFSEQ: This record has not yet been subject to final

NCBI review. The reference sequence was derived from AE017046.

COMPLETENESS: full length.

/accessions=["'NC_005816"]

/organism=Yersinia pestis biovar Microtus str. 91001

/sequence_version=1

/source=Yersinia pestis biovar Microtus str. 91001

/data_file_division=BCT

/keywords=[""]

/date=21-JUL-2008

/gi=45478711

/references=[Reference (title='Genetics of metabolic variations between Yersinia pestis biovars and tl
Seq ('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG', IUPACAmbiguousDNA())

You should be able to spot some differences already! But taking the attributes individually, the sequence string is the
same as before, but this time Bio.SeqlO has been able to automatically assign a more specific alphabet:

In [13]: record.seq

Out [13]: Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. ..CTG', IUPACAmbiguousDNA ())
The name comes from the LOCUS line, while the :raw-latex:‘\verblidl includes the version suffix.

The description comes from the DEFINITION line:

In [14]: print (record.id)
print (record.name)
print (record.description)

NC_005816.1
NC_005816
Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.

GenBank files don’t have any per-letter annotations:

In [15]: record.letter_annotations

Oout[15]: {}

Most of the annotations information gets recorded in the :raw-latex:‘\verblannotationsl|® dictionary, for example:

In [16]: print(len(record.annotations))
print (record.annotations["source"])

11
Yersinia pestis biovar Microtus str. 91001

The dbxrefs list gets populated from any PROJECT or DBLINK lines:
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In [17]: record.dbxrefs
Out [17]: ['Project:58037"]

Finally, and perhaps most interestingly, all the entries in the features table (e.g. the genes or CDS features) get recorded
as SeqFeature objects in the features list.

In [18]: len(record.features)

Out[18]: 41

5.3 Feature, location and position objects

5.3.1 SeqFeature objects

Sequence features are an essential part of describing a sequence. Once you get beyond the sequence itself, you need
some way to organize and easily get at the more ‘abstract’ information that is known about the sequence. While it is
probably impossible to develop a general sequence feature class that will cover everything, the Biopython SeqFeature
class attempts to encapsulate as much of the information about the sequence as possible. The design is heavily based on
the GenBank/EMBL feature tables, so if you understand how they look, you’ll probably have an easier time grasping
the structure of the Biopython classes.

The key idea about each SeqFeature object is to describe a region on a parent sequence, typically a SeqRecord object.
That region is described with a location object, typically a range between two positions (see below).

The SeqFeature class has a number of attributes, so first we’ll list them and their general features, and then later in the
chapter work through examples to show how this applies to a real life example. The attributes of a SeqFeature are:

* .type] - This is a textual description of the type of feature (for instance, this will be something like ‘CDS’ or
‘gene’).

¢ .location - The location of the SeqFeature on the sequence that you are dealing with. The SeqFeature delegates
much of its functionality to the location object, and includes a number of shortcut attributes for properties of the
location:

e .ref - shorthand for .location.ref - any (different) reference sequence the location is referring to. Usually just
None.

« .ref_db - shorthand for .location.ref_db - specifies the database any identifier in .ref refers to. Usually just None.

e .strand - shorthand for .location.strand - the strand on the sequence that the feature is located on. For double
stranded nucleotide sequence this may either be 1 for the top strand, -1 for the bottom strand, O if the strand is
important but is unknown, or None if it doesn’t matter. This is None for proteins, or single stranded sequences.

* .qualifiers - This is a Python dictionary of additional information about the feature. The key is some kind
of terse one-word description of what the information contained in the value is about, and the value is the
actual information. For example, a common key for a qualifier might be ‘evidence’ and the value might be
‘computational (non-experimental). This is just a way to let the person who is looking at the feature know that
it has not be experimentally (i.e. in a wet lab) confirmed. Note that other the value will be a list of strings (even
when there is only one string). This is a reflection of the feature tables in GenBank/EMBL files.

 .sub_features - This used to be used to represent features with complicated locations like ‘joins’ in Gen-
Bank/EMBL files. This has been deprecated with the introduction of the CompoundLocation object, and should
now be ignored.
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5.3.2 Positions and locations

The key idea about each SeqFeature object is to describe a region on a parent sequence, for which we use a location
object, typically describing a range between two positions. Two try to clarify the terminology we’re using:

* position - This refers to a single position on a sequence, which may be fuzzy or not. For instance, 5, 20, <100
and >200 are all positions.

* location - A location is region of sequence bounded by some positions. For instance 5..20 (i.e. 5 to 20) is a
location.

I just mention this because sometimes I get confused between the two.

FeatureLocation object

Unless you work with eukaryotic genes, most SeqFeature locations are extremely simple - you just need start and end
coordinates and a strand. That’s essentially all the basic FeatureLocation object does.

In practise of course, things can be more complicated. First of all we have to handle compound locations made up of
several regions. Secondly, the positions themselves may be fuzzy (inexact).

CompoundLocation object

Biopython 1.62 introduced the CompoundLocation as part of a restructuring of how complex locations made up of
multiple regions are represented. The main usage is for handling ‘join’ locations in EMBL/GenBank files.

Fuzzy Positions

So far we’ve only used simple positions. One complication in dealing with feature locations comes in the positions
themselves. In biology many times things aren’t entirely certain (as much as us wet lab biologists try to make them
certain!). For instance, you might do a dinucleotide priming experiment and discover that the start of mRNA transcript
starts at one of two sites. This is very useful information, but the complication comes in how to represent this as a
position. To help us deal with this, we have the concept of fuzzy positions. Basically there are several types of fuzzy
positions, so we have five classes do deal with them:

» ExactPosition - As its name suggests, this class represents a position which is specified as exact along the
sequence. This is represented as just a number, and you can get the position by looking at the position attribute
of the object.

* BeforePosition - This class represents a fuzzy position that occurs prior to some specified site. In Gen-
Bank/EMBL notation, this is represented as something like <13, signifying that the real position is located
somewhere less than 13. To get the specified upper boundary, look at the position attribute of the object.

» AfterPosition - Contrary to BeforePosition, this class represents a position that occurs after some specified site.
This is represented in GenBank as >13, and like BeforePosition, you get the boundary number by looking at the
position attribute of the object.

* WithinPosition - Occasionally used for GenBank/EMBL locations, this class models a position which occurs
somewhere between two specified nucleotides. In GenBank/EMBL notation, this would be represented as (1.5),
to represent that the position is somewhere within the range 1 to 5. To get the information in this class you have
to look at two attributes. The position attribute specifies the lower boundary of the range we are looking at, so
in our example case this would be one. The extension attribute specifies the range to the higher boundary, so in
this case it would be 4. So object.position is the lower boundary and object.position + object.extension is the
upper boundary.
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* OneOfPosition - Occasionally used for GenBank/EMBL locations, this class deals with a position where sev-
eral possible values exist, for instance you could use this if the start codon was unclear and there where two
candidates for the start of the gene. Alternatively, that might be handled explicitly as two related gene features.

¢ UnknownPosition - This class deals with a position of unknown location. This is not used in GenBank/EMBL,
but corresponds to the ‘?” feature coordinate used in UniProt.

Here’s an example where we create a location with fuzzy end points:

In [19]: start_pos = SeqgFeature.AfterPosition (5)
end_pos = SegFeature.BetweenPosition (9, left=8, right=9)
my_location = SegFeature.Featurelocation (start_pos, end_pos)

Note that the details of some of the fuzzy-locations changed in Biopython 1.59, in particular for BetweenPosition and
WithinPosition you must now make it explicit which integer position should be used for slicing etc. For a start position
this is generally the lower (left) value, while for an end position this would generally be the higher (right) value.

If you print out a FeatureLocation object, you can get a nice representation of the information:
In [20]: print (my_location)

[>5:(879)]

We can access the fuzzy start and end positions using the start and end attributes of the location:

In [21]: print(my_location.start)
print (my_location.start)
print (my_location.end)
print (my_location.end)

>5
>5
(879)
(879)

If you don’t want to deal with fuzzy positions and just want numbers, they are actually subclasses of integers so should
work like integers:

In [22]: print (int (my_location.start))
print (int (my_location.end))

5
9

For compatibility with older versions of Biopython you can ask for the :raw-latex:‘\verbInofuzzy_startl‘ and :raw-
latex:“\verblnofuzzy_endl attributes of the location which are plain integers:

In [23]: print (my_location.nofuzzy_start)
print (my_location.nofuzzy_end)

5
9

Notice that this just gives you back the position attributes of the fuzzy locations.

Similarly, to make it easy to create a position without worrying about fuzzy positions, you can just pass in numbers
to the :raw-latex:‘\verblFeaturePosition|* constructors, and you’ll get back out :raw-latex:‘\verblExactPosition|‘
objects:

In [24]: exact_location = SegFeature.Featurelocation (5, 9)
print (exact_location)
print (exact_location.start)
print (int (exact_location.start))
print (exact_location.nofuzzy_start)
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[5:9]
5
5
5

That is most of the nitty gritty about dealing with fuzzy positions in Biopython. It has been designed so that dealing
with fuzziness is not that much more complicated than dealing with exact positions, and hopefully you find that true!

Location testing

You can use the Python keyword in with a SeqFeature or location object to see if the base/residue for a parent coordi-
nate is within the feature/location or not.

For example, suppose you have a SNP of interest and you want to know which features this SNP is within, and lets
suppose this SNP is at index 4350 (Python counting!). Here is a simple brute force solution where we just check all
the features one by one in a loop:

In [25]: my_snp = 4350
record = SeqlO.read("data/NC_005816.gb", "genbank")
for feature in record.features:
if my_snp in feature:

o

print ("$s %$s" % (feature.type, feature.qualifiers.get ('db_xref')))

source ['taxon:229193']
gene ['GenelID:2767712"]
CDS ['GI:45478716', 'GenelID:2767712"]

Note that gene and CDS features from GenBank or EMBL files defined with joins are the union of the exons — they do
not cover any introns.

5.3.3 Sequence described by a feature or location

A SeqFeature or location object doesn’t directly contain a sequence, instead the location describes how to get this from
the parent sequence. For example consider a (short) gene sequence with location 5:18 on the reverse strand, which in
GenBank/EMBL notation using 1-based counting would be complement(6..18), like this:

In [26]: example_parent = Seq("ACCGAGACGGCAAAGGCTAGCATAGGTATGAGACTTCCTTCCTGCCAGTGCTGAGGAACTGGGAGCCTAC
example_feature = SegFeature.SeqgFeature (Featurelocation (5, 18), type="gene", strand=-1)

You could take the parent sequence, slice it to extract 5:18, and then take the reverse complement. If you are using
Biopython 1.59 or later, the feature location’s start and end are integer like so this works:

In [27]: feature_seq = example_parent [example_feature.location.start:example_feature.location.end].re
print (feature_seq)

AGCCTTTGCCGTIC

This is a simple example so this isn’t too bad — however once you have to deal with compound features (joins) this is
rather messy. Instead, the SeqFeature object has an extract method to take care of all this:

In [28]: feature_seqg = example_feature.extract (example_parent)
print (feature_seq)

AGCCTTTGCCGTC
The length of a SeqFeature or location matches that of the region of sequence it describes.

In [29]: print
print
print
print

example_feature.extract (example_parent))

len (example_feature.extract (example_parent)))
len (example_feature))

len (example_feature.location))
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AGCCTTTGCCGTIC
13
13
13

For simple FeatureLocation objects the length is just the difference between the start and end positions. However, for
a CompoundLocation the length is the sum of the constituent regions.

5.4 References

Another common annotation related to a sequence is a reference to a journal or other published work deal-
ing with the sequence. We have a fairly simple way of representing a Reference in Biopython — we have a
Bio.SeqFeature.Reference class that stores the relevant information about a reference as attributes of an object.

The attributes include things that you would expect to see in a reference like journal, title and authors. Additionally,
it also can hold the medline_id and pubmed_id and a comment about the reference. These are all accessed simply as
attributes of the object.

A reference also has a location object so that it can specify a particular location on the sequence that the reference
refers to. For instance, you might have a journal that is dealing with a particular gene located on a BAC, and want to
specify that it only refers to this position exactly. The location is a potentially fuzzy location.

Any reference objects are stored as a list in the SeqRecord object’s annotations dictionary under the key ‘references’.
That’s all there is too it. References are meant to be easy to deal with, and hopefully general enough to cover lots of
usage cases.

5.5 The format method

The format method of the SeqRecord class gives a string containing your record formatted using one of the output file
formats supported by Bio.SeqlO, such as FASTA:

In [30]: record = SeqRecord(Seq ("MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVTFRGPSETHLDSMVGQALFGD" \
+"GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK" \
+"NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM" \
+"SSAC", generic_protein),

id="gi|14150838|gb|ARAK54648.1|AF376133_1",
description="chalcone synthase [Cucumis sativus]")
print (record. format ("fasta"))

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAKDLAENNRGARVLVVCSEITAVIFRGPSETHLDSMVGQALFEFGD
GAGAVIVGSDPDLSVERPLYELVWTGATLLPDSEGAIDGHLREVGLTFHLLKDVPGLISK
NIEKSLKEAFTPLGISDWNSTFWIAHPGGPAILDQVEAKLGLKEEKMRATREVLSEYGNM

SSAC

This format method takes a single mandatory argument, a lower case string which is supported by Bio.SeqlO as an
output format. However, some of the file formats Bio.SeqlO can write to require more than one record (typically the
case for multiple sequence alignment formats), and thus won’t work via this format method.

5.6 Slicing a SeqRecord

You can slice a SeqRecord, to give you a new SeqRecord covering just part of the sequence. What is important here
is that any per-letter annotations are also sliced, and any features which fall completely within the new sequence are
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preserved (with their locations adjusted).
For example, taking the same GenBank file used earlier:

In [31]: record = SeqIO.read("data/NC_005816.gb", "genbank")
print (record)
print (len(record))
print (len (record. features))

ID: NC_005816.1

Name: NC_005816

Description: Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.
Database cross-references: Project:58037

Number of features: 41

/taxonomy=['Bacteria', 'Proteobacteria', 'Gammaproteobacteria', 'Enterobacteriales', 'Enterobacterias
/comment=PROVISIONAL REFSEQ: This record has not yet been subject to final

NCBI review. The reference sequence was derived from AE017046.

COMPLETENESS: full length.

/accessions=['NC_005816"]

/organism=Yersinia pestis biovar Microtus str. 91001

/sequence_version=1

/source=Yersinia pestis biovar Microtus str. 91001

/data_file_division=BCT

/keywords=[""]

/date=21-JUL-2008

/gi=45478711

/references=[Reference (title='Genetics of metabolic variations between Yersinia pestis biovars and tl!
Seq ('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG"', IUPACAmbiguousDNA ())
9609

41

For this example we’re going to focus in on the pim gene, YP_pPCPOS. If you have a look at the GenBank file directly
you’ll find this gene/CDS has location string 4343..4780, or in Python counting 4342:4780. From looking at the file
you can work out that these are the twelfth and thirteenth entries in the file, so in Python zero-based counting they are
entries 11 and 12 in the features list:

In [32]: print (record.features[20])
print (record. features[21])

type: gene
location: [4342:4780] (+)
qualifiers:
Key: db_xref, Value: ['GenelID:2767712"]
Key: gene, Value: ['pim']
Key: locus_tag, Value: ['YP_pPCP05']
type: CDS
location: [4342:47807] (+)
qualifiers:
Key: codon_start, Value: ['1l']
Key: db_xref, Value: ['GI:45478716', 'GeneID:2767712"]
Key: gene, Value: ['pim']
Key: locus_tag, Value: ['YP_pPCP05']
Key: note, Value: ['similar to many previously sequenced pesticin immunity protein entries of Ye:
Key: product, Value: ['pesticin immunity protein']
Key: protein_id, Value: ['NP_995571.1"]
Key: transl_table, Value: ['11l']

Key: translation, Value: ['MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILONLELNTFGNSLSHGIYGKQTTFKQTEFTNIKSNTI

Let’s slice this parent record from 4300 to 4800 (enough to include the pim gene/CDS), and see how many features
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we get:

In [33]: sub_record = record[4300:4800]
print (sub_record)
sub_record
print (sub_record)
print (len (sub_record))
print (len (sub_record. features))

ID: NC_005816.1

Name: NC_005816

Description: Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.
Number of features: 2

Seq ('ATAAATAGATTATTCCAAATAATTTATTTATGTAAGAACAGGATGGGAGGGGGA. . .TTA', IUPACAmbiguousDNA())
ID: NC_005816.1

Name: NC_005816

Description: Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.
Number of features: 2

Seq ('ATAAATAGATTATTCCAAATAATTTATTTATGTAAGAACAGGATGGGAGGGGGA. . .TTA', IUPACAmbiguousDNA ())
500

2

Our sub-record just has two features, the gene and CDS entries for YP_pPCP05:

In [34]: print (sub_record.features[0])
print (sub_record. features([1])

type: gene
location: [42:480] (+)
qualifiers:
Key: db_xref, Value: ['GenelID:2767712"]
Key: gene, Value: ['pim']
Key: locus_tag, Value: ['YP_pPCP05']
type: CDS
location: [42:4807] (+)
qualifiers:
Key: codon_start, Value: ['1']
Key: db_xref, Value: ['GI:45478716', 'GenelID:2767712"]
Key: gene, Value: ['pim']
Key: locus_tag, Value: ['YP_pPCP05']
Key: note, Value: ['similar to many previously sequenced pesticin immunity protein entries of Ye
Key: product, Value: ['pesticin immunity protein']
Key: protein_id, Value: ['NP_995571.1"']
Key: transl_table, Value: ['1l1l']

Key: translation, Value: ['MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILONLELNTFGNSLSHGIYGKQTTFKQTEFTNIKSNTI

Notice that their locations have been adjusted to reflect the new parent sequence!

While Biopython has done something sensible and hopefully intuitive with the features (and any per-letter annotation),
for the other annotation it is impossible to know if this still applies to the sub-sequence or not. To avoid guessing, the
annotations and dbxrefs are omitted from the sub-record, and it is up to you to transfer any relevant information as
appropriate.

In [35]: print (sub_record.annotations)
print (sub_record.dbxrefs)

{}
[]

The same point could be made about the record id, name and description, but for practicality these are preserved:

38 Chapter 5. Sequence annotation objects



test Documentation, Release test

In [36]: print (sub_record.id)
print (sub_record.name)

print (sub_record.description)

NC_005816.1
NC_005816
Yersinia pestis biovar Microtus str.

91001 plasmid pPCPl, complete sequence.

This illustrates the problem nicely though, our new sub-record is not the complete sequence of the plasmid, so the
description is wrong! Let’s fix this and then view the sub-record as a reduced GenBank file using the format method
described above:

In [37]: sub_record.description = "Yersinia pestis biovar Microtus str.

print (sub_record. format ("genbank"))

91001 plasmid pPCP1,

LOCUS
DEFINITION
ACCESSION
VERSION
KEYWORDS
SOURCE
ORGANISM

NC_005816 500 bp
Yersinia pestis biovar Microtus str.
NC_005816

NC_005816.1

DNA UNK 01-JAN-1980
91001 plasmid pPCPl, partial.

FEATURES
gene

Location/Qualifiers

43..480

/db_xref="GenelID:2767712"

/gene="pim"

/locus_tag="YP_pPCP0O5"

43..480

/codon_start=1

/db_xref="GI:45478716"

/db_xref="GenelID:2767712"

/gene="pim"

/locus_tag="YP_pPCP0O5"

/note="similar to many previously sequenced pesticin
immunity protein entries of Yersinia pestis plasmid pPCP,
e.g. gi| 16082683, ref|NP_395230.1| (NC_003132) ,
gi|1200166|emb|CAA90861.1| (Z254145 ) , gi|1488655]

emb | CAA63439.1] (X92856) , gi|2996219|gb|AAC62543.1|
(AF053945) , and gi|5763814|emb|CAB531 67.1] (AL109969)"
/product="pesticin immunity protein"
/protein_id="NP_995571.1"

/transl_table=11
/translation="MGGGMISKLFCLALIFLSSSGLAEKNTYTAKDILONLELNTEFGNS
LSHGIYGKQTTFKQTEFTNIKSNTKKHIALTNKDNSWMISLKILGIKRDEYTVCFEDFES
LIRPPTYVAIHPLLIKKVKSGNFIVVKEIKKSIPGCTVYYH"

CDS

ORIGIN

61
121
181
241
301
361
421
481

/7

ataaatagat
tcaaagttat
acatatacag
tctcatggca
agcaacacca
aaaatactag
agaccgccaa
tttatagtag
tagcaagccc

tattccaaat
tttgcttggce
caaaagacat
tctatgggaa
aaaaacacat
gaattaagag
catatgtagc
tgaaagaaat
ctcattatta

aatttattta
tctcatattt
cttgcaaaac
acagacaacc
tgcacttatc
agatgagtat
catacatcct
aaagaaatct

tgtaagaaca
ttatcatcaa
ctagaattaa
ttcaagcaaa
aataaagaca
actgtctgtt
ctacttataa
atccctggtt

ggatgggagg
gtggccttgce
atacctttgg
ccgagtttac
actcatggat
ttgaagattt
aaaaagtaaa
gcactgtata

gggaatgatc
agaaaaaaac
caattcattg
aaatattaaa
gatatcatta
ctctctaata
atctggaaac
ttatcattaa
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5.7 Adding SeqRecord objects

You can add SeqRecord objects together, giving a new SeqRecord. What is important here is that any common per-
letter annotations are also added, all the features are preserved (with their locations adjusted), and any other common
annotation is also kept (like the id, name and description).

For an example with per-letter annotation, we’ll use the first record in a FASTQ file.

In [38]: record = next (SeqlO.parse ("data/example.fastq", "fastg"))
print (len(record))
print (record.seq)
print (record.letter_annotations["phred_quality"])

25
CCCTTCTTGTCTTCAGCGTTTCTCC
[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26, 26, 26, 26, 23, 23]
Let’s suppose this was Roche 454 data, and that from other information you think the TTT should be only TT. We can
make a new edited record by first slicing the SeqRecord before and after the ‘extra’ third T:
In [39]: left = record[:20]
print (left.seq)
print (left.letter_annotations["phred_quality"])
right = record[21:]
print (right.seq)
print (right.letter_annotations["phred_quality"])
CCCTTCTTGTCTTCAGCGTT
[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26]
CTCC
[26, 26, 23, 23]
Now add the two parts together:
In [40]: edited = left + right
print (len (edited))
print (edited.seq)
print (edited.letter_annotations["phred_quality"])
24
CCCTTCTTGTCTTCAGCGTTCTCC
[26, 26, 18, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 22, 26, 26, 26, 26, 26, 26, 23, 23]
Easy and intuitive? We hope so! You can make this shorter with just:
In [41]: edited = record[:20] + record[21:]
Now, for an example with features, we’ll use a GenBank file. Suppose you have a circular genome:
In [42]: record = SeqlO.read("data/NC_005816.gb", "genbank")
print (record)
print (len(record))
print (len (record. features))
print (record.dbxrefs)
print (record.annotations.keys ())
ID: NC_005816.1
Name: NC_005816
Description: Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.
Database cross-references: Project:58037
Number of features: 41
/taxonomy=['Bacteria', 'Proteobacteria', 'Gammaproteobacteria', 'Enterobacteriales', 'Enterobacteriac

/comment=PROVISIONAL REFSEQ: This record has not yet been subject to final
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NCBI review. The reference sequence was derived from AE017046.

COMPLETENESS: full length.

/accessions=["'NC_005816"]

/organism=Yersinia pestis biovar Microtus str. 91001

/sequence_version=1

/source=Yersinia pestis biovar Microtus str. 91001

/data_file_division=BCT

/keywords=[""]

/date=21-JUL-2008

/gi=45478711

/references=[Reference (title='Genetics of metabolic variations between Yersinia pestis biovars and tl
Seq ('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG. . .CTG', IUPACAmbiguousDNA())
9609

41
['"Project:58037"]
dict_keys (['taxonomy', 'comment', 'accessions', 'organism', 'sequence_version', 'source', 'data_file.

You can shift the origin like this:

In [43]: shifted = record[2000:] + record[:2000]
print (shifted)
print (len(shifted))

ID: NC_005816.1

Name: NC_005816

Description: Yersinia pestis biovar Microtus str. 91001 plasmid pPCPl, complete sequence.
Number of features: 40

Seq ('GATACGCAGTCATATTTTTTACACAATTCTCTAATCCCGACAAGGTCGTAGGTC. .. .GGA"', IUPACAmbiguousDNA ())
9609

Note that this isn’t perfect in that some annotation like the database cross references and one of the features (the source
feature) have been lost:

In [44]: print(len(shifted.features))
print (shifted.dbxrefs)
print (shifted.annotations.keys())

40
[]
dict_keys([])

This is because the SeqRecord slicing step is cautious in what annotation it preserves (erroneously propagating anno-
tation can cause major problems). If you want to keep the database cross references or the annotations dictionary, this
must be done explicitly:

In [45]: shifted.dbxrefs = record.dbxrefs[:]
shifted.annotations = record.annotations.copy ()
print (shifted.dbxrefs)
print (shifted.annotations.keys())

['"Project:58037"]
dict_keys(['accessions', 'source', 'data_file_division', 'comment', 'gi', 'references', 'taxonomy',

Also note that in an example like this, you should probably change the record identifiers since the NCBI references
refer to the original unmodified sequence.

5.8 Reverse-complementing SeqRecord objects

One of the new features in Biopython 1.57 was the SeqRecord object’s reverse_complement method. This tries to
balance easy of use with worries about what to do with the annotation in the reverse complemented record.
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For the sequence, this uses the Seq object’s reverse complement method. Any features are transferred with the location
and strand recalculated. Likewise any per-letter-annotation is also copied but reversed (which makes sense for typical
examples like quality scores). However, transfer of most annotation is problematical.

For instance, if the record ID was an accession, that accession should not really apply to the reverse complemented
sequence, and transferring the identifier by default could easily cause subtle data corruption in downstream analysis.
Therefore by default, the SeqRecord’s id, name, description, annotations and database cross references are all not
transferred by default.

The SeqRecord object’s reverse_complement method takes a number of optional arguments corresponding to proper-
ties of the record. Setting these arguments to True means copy the old values, while False means drop the old values
and use the default value. You can alternatively provide the new desired value instead.

Consider this example record:

In [46]: record SeqIO.read("data/NC_005816.gb", "genbank")

print ("$s %i %i %i %i" % (record.id, len(record), len(record.features), len(record.dbxrefs)
NC_005816.1 9609 41 1 11

Here we take the reverse complement and specify a new identifier - but notice how most of the annotation is dropped
(but not the features):

In [47]: rc = record.reverse_complement (1d="TESTING")

o

print ("%$s %$i %i %1 %$i" % (rc.id, len(rc), len(rc.features), len(rc.dbxrefs), len(rc.annotat:
TESTING 9609 41 0 O

Source of the materials: Biopython Tutorial and Cookbook (adapted)
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Sequence Input/Output

In this noteboo we’ll discuss in more detail the Bio.SeqlO module, which was briefly introduced before. This aims to
provide a simple interface for working with assorted sequence file formats in a uniform way. See also the Bio.SeqlO
wiki page (http://biopython.org/wiki/SeqlO), and the built in documentation (also http://biopython.org/DIST/docs/api/
Bio.SeqlO-module.html :

In [1]: import gzip
from io import StringIO

from Bio import Entrez

from Bio import ExPASy

from Bio import SeqIO

from Bio.Alphabet import generic_protein
from Bio.Seqg import Seq

from Bio.SegRecord import SegRecord

from Bio.SeqUtils.CheckSum import seguid

The catch is that you have to work with SeqRecord objects plus annotation like an identifier and description.

6.1 Parsing or Reading Sequences

The workhorse function Bio.SeqlO.parse() is used to read in sequence data as SeqRecord objects. This function
expects two arguments:

* The first argument is a handle to read the data from, or a filename. A handle is typically a file opened for reading,
but could be the output from a command line program, or data downloaded from the internet.

» The second argument is a lower case string specifying sequence format — we don’t try and guess the file format
for you! See http://biopython.org/wiki/SeqlO for a full listing of supported formats.

There is an optional argument alphabet to specify the alphabet to be used. This is useful for file formats like FASTA
where otherwise Bio.SeqlO will default to a generic alphabet.

The Bio.SeqlO.parse() function returns an iterator which gives SeqRecord objects. Iterators are typically used in a for
loop as shown below.
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Sometimes you’ll find yourself dealing with files which contain only a single record. For this situation use the function
Bio.SeqlO.read() which takes the same arguments. Provided there is one and only one record in the file, this is returned
as a SeqRecord object. Otherwise an exception is raised.

6.2 Reading Sequence Files

In general Bio.SeqlO.parse() is used to read in sequence files as SeqRecord objects, and is typically used with a for
loop like this:

In [2]: # we show the first 3 only
for i, seq_record in enumerate (SeqlO.parse ("data/ls_orchid.fasta", "fasta")):
print (seq_record.id)
print (repr (seqg_record.seq))
print (len(seq_record))
if 1 ==
break

gi|2765658 |emb|Z278533.1|CIZ78533

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC', SingleLetterAlphabet ())
740

gi|2765657 |emb|Z278532.1[CCZ78532

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAG. . .GGC"', SingleLetterAlphabet())
753

gi|2765656|emb|278531.1|CFz278531

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAG. . .TAA', SingleLetterAlphabet())
748

The above example is repeated from a previous notebook, and will load the orchid DNA sequences in the FASTA
format file. If instead you wanted to load a GenBank format file then all you need to do is change the filename and the
format string:

In [3]: #we show the frist 3
for i, seg_record in enumerate (SeqlO.parse ("data/ls_orchid.gbk", "genbank")):
print (seqg_record.id)
print (seq_record.seq)
print (len (seq_record))
if 1 ==
break

Z278533.1
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTGAATCCGGAGGACCGGTGTACTCAGCTCACC!
740

278532.1
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAACAGAATATATGATCGAGTGAATCTGGAGGACCTGTGGTAACTCAGCTCG?
753

Z278531.1
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTTGAGACAGCAGAACATACGATCGAGTGAATCCGGAGGACCCGTGGTTACACGGCTCAL
748

Similarly, if you wanted to read in a file in another file format, then assuming Bio.SeqlO.parse() supports it you would
just need to change the format string as appropriate, for example ‘swiss’ for SwissProt files or ‘embl’ for EMBL text
files. There is a full listing on the wiki page (http://biopython.org/wiki/SeqlO) and in the built in documentation (also
:raw-latex: ‘\http*://biopython.org/DIST/docs/api/Bio.SeqlO-module.html).

Another very common way to use a Python iterator is within a list comprehension (or a generator expression). For
example, if all you wanted to extract from the file was a list of the record identifiers we can easily do this with the
following list comprehension:

In [4]: [seqg_record.id for seq record in SeqlIO.parse ("data/ls_orchid.gbk", "genbank")][:10] # ten o1
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Out[4]: ['Z78533.1"',
'7278532.1",
'278531.1",
'7278530.1",
'7278529.1",
'z278527.1",
'7278526.1",
'7278525.1",
'278524.1",
'7278523.1"]

6.2.1 Iterating over the records in a sequence file

In the above examples, we have usually used a for loop to iterate over all the records one by one. You can use the for
loop with all sorts of Python objects (including lists, tuples and strings) which support the iteration interface.

The object returned by Bio.SeqlO is actually an iterator which returns SeqRecord objects. You get to see each record
in turn, but once and only once. The plus point is that an iterator can save you memory when dealing with large files.

Instead of using a for loop, can also use the next() function on an iterator to step through the entries, like this:
In [5]: record_iterator = SeqlO.parse("data/ls_orchid.fasta", "fasta")
first_record = next (record_iterator)

print (first_record.id)
print (first_record.description)

second_record = next (record_iterator)
print (second_record.id)
print (second_record.description)

gi|2765658|emb|278533.1|CIZz78533

gi|2765658|emb|Z78533.1|CIZ78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA
gi|2765657 |emb|Z278532.1|CCZ78532

gi|2765657 |emb|Z278532.1|CCZ78532 C.californicum 5.8S rRNA gene and ITS1 and ITS2 DNA

Note that if you try to use next() and there are no more results, you’ll get the special Stoplteration exception.

One special case to consider is when your sequence files have multiple records, but you only want the first one. In this
situation the following code is very concise:

In [6]: next (SeqlO.parse("data/ls_orchid.gbk", "genbank"))

Out [6]: SegRecord (seg=Seq('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC',

A word of warning here — using the next() function like this will silently ignore any additional records in the file. If
your files have one and only one record, like some of the online examples later in this chapter, or a GenBank file for a
single chromosome, then use the new Bio.SeqlO.read() function instead. This will check there are no extra unexpected
records present.

6.2.2 Getting a list of the records in a sequence file

In the previous section we talked about the fact that Bio.SeqlO.parse() gives you a SeqRecord iterator, and that you
get the records one by one. Very often you need to be able to access the records in any order. The Python list data
type is perfect for this, and we can turn the record iterator into a list of SeqRecord objects using the built-in Python
function list() like so:

In [7]: records = list (SeqlO.parse("data/ls_orchid.gbk", "genbank"))
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o

print ("Found %i records" % len(records))

print ("The last record")

last_record = records[-1] #using Python's list tricks
print (last_record.id)

print (repr (last_record.seq))

print (len(last_record))

print ("The first record")

first_record = records|[0] #remember, Python counts from zero
print (first_record.id)

print (repr (first_record.seq))

print (len(first_record))

Found 94 records

The last record

7278439.1

Seq ('CATTGTTGAGATCACATAATAATTGATCGAGTTAATCTGGAGGATCTIGTTTACT. . .GCC', IUPACAmbiguousDNA())
592

The first record

Z78533.1

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC', IUPACAmbiguousDNA ())
740

You can of course still use a for loop with a list of SeqRecord objects. Using a list is much more flexible than
an iterator (for example, you can determine the number of records from the length of the list), but does need more
memory because it will hold all the records in memory at once.

6.2.3 Extracting data

The SeqRecord object and its annotation structures are described more fully in in another notebook. As an example of
how annotations are stored, we’ll look at the output from parsing the first record in the orchid GenBank file.

In [8]: record_iterator = SeqlO.parse("data/ls_orchid.gbk", "genbank")
first_record = next (record_iterator)
print (first_record)

ID: Z78533.1

Name: 278533

Description: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.

Number of features: 5

/organism=Cypripedium irapeanum

/taxonomy=['Eukaryota', 'Viridiplantae', 'Streptophyta', 'Embryophyta', 'Tracheophyta', 'Spermatophyt
/sequence_version=1

/keywords=['5.8S ribosomal RNA', '5.8S rRNA gene', 'internal transcribed spacer',6 'ITS1', 'ITS2']
/date=30-NOV-2006

/accessions=['Z78533"]

/source=Cypripedium irapeanum

/references=[Reference (title='Phylogenetics of the slipper orchids (Cypripedioideae: Orchidaceae): m
/gi=2765658

/data_file_division=PLN

Seq ('CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGG. . .CGC', IUPACAmbiguousDNA())

This gives a human readable summary of most of the annotation data for the SeqRecord. For this example we’re going
to use the .annotations attribute which is just a Python dictionary. The contents of this annotations dictionary were
shown when we printed the record above. You can also print them out directly:

print(first_record.annotations)
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Like any Python dictionary, you can easily get a list of the keys:
print(first_record.annotations.keys())

or values:

print (first_record.annotations.values())

In general, the annotation values are strings, or lists of strings. One special case is any references in the file get stored
as reference objects.

Suppose you wanted to extract a list of the species from the GenBank file. The information we want, Cypripedium
irapeanum, is held in the annotations dictionary under ‘source’ and ‘organism’, which we can access like this:

In [9]: print (first_record.annotations["source"])
print (first_record.annotations["organism"])

Cypripedium irapeanum
Cypripedium irapeanum

In general, ‘organism’ is used for the scientific name (in Latin, e.g. Arabidopsis thaliana), while ‘source’ will often
be the common name (e.g. thale cress). In this example, as is often the case, the two fields are identical.

Now let’s go through all the records, building up a list of the species each orchid sequence is from:

In [10]: all_species = []
for seq_record in SeqIO.parse ("data/ls_orchid.gbk", "genbank"):
all_species.append(seq_record.annotations["organism"])
print (all_species[:10]) # we print only 10

['"Cypripedium irapeanum', 'Cypripedium californicum', 'Cypripedium fasciculatum', 'Cypripedium marga:
Another way of writing this code is to use a list comprehension:

In [11]: all_species = [seq_record.annotations["organism"] for seq record in \
SeqIO.parse ("data/ls_orchid.gbk", "genbank") ]
print (all_species[:10])

['"Cypripedium irapeanum', 'Cypripedium californicum', 'Cypripedium fasciculatum', 'Cypripedium marga:
Great. That was pretty easy because GenBank files are annotated in a standardised way.

Now, let’s suppose you wanted to extract a list of the species from a FASTA file, rather than the GenBank file. The
bad news is you will have to write some code to extract the data you want from the record’s description line - if the
information is in the file in the first place! Our example FASTA format file starts like this:

>gi]2765658|emb|278533.1|CIz78533 C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA
CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGATGAGACCGTGGAATAAACGATCGAGTG
AATCCGGAGGACCGGTGTACTCAGCTCACCGGGGGCATTGCTCCCGTGGTGACCCTGATTTGTTGTTGGG

You can check by hand, but for every record the species name is in the description line as the second word. This means
if we break up each record’s .description at the spaces, then the species is there as field number one (field zero is the
record identifier). That means we can do this:

In [12]: all_species = []
for seq_record in SeqIO.parse ("data/ls_orchid.fasta", "fasta"):
all_species.append(seq_record.description.split () [1])

print (all_species[:10])
['C.irapeanum', 'C.californicum', 'C.fasciculatum', 'C.margaritaceum', 'C.lichiangense', 'C.yatabean

The concise alternative using list comprehensions would be:
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In [13]: all_species == [seqg_record.description.split () [1] for seqg_record in \
SeqIO.parse ("data/ls_orchid.fasta", "fasta")]
print (all_species[:10])

['"C.irapeanun', 'C.californicum', 'C.fasciculatum', 'C.margaritaceum', 'C.lichiangense',

In general, extracting information from the FASTA description line is not very nice. If you can get your sequences in
a well annotated file format like GenBank or EMBL, then this sort of annotation information is much easier to deal
with.

6.3 Parsing sequences from compressed files

In the previous section, we looked at parsing sequence data from a file. Instead of using a filename, you can g